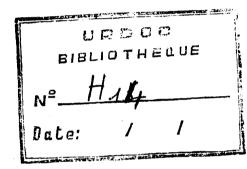
Ministère de l'Education Nationale

Direction Nationale des Enseignements Supérieurs et de la Recherche Scientifique

Ecole Normale Supérieure Bamako


République du Mali Un Peuple - Un But - Une Foi

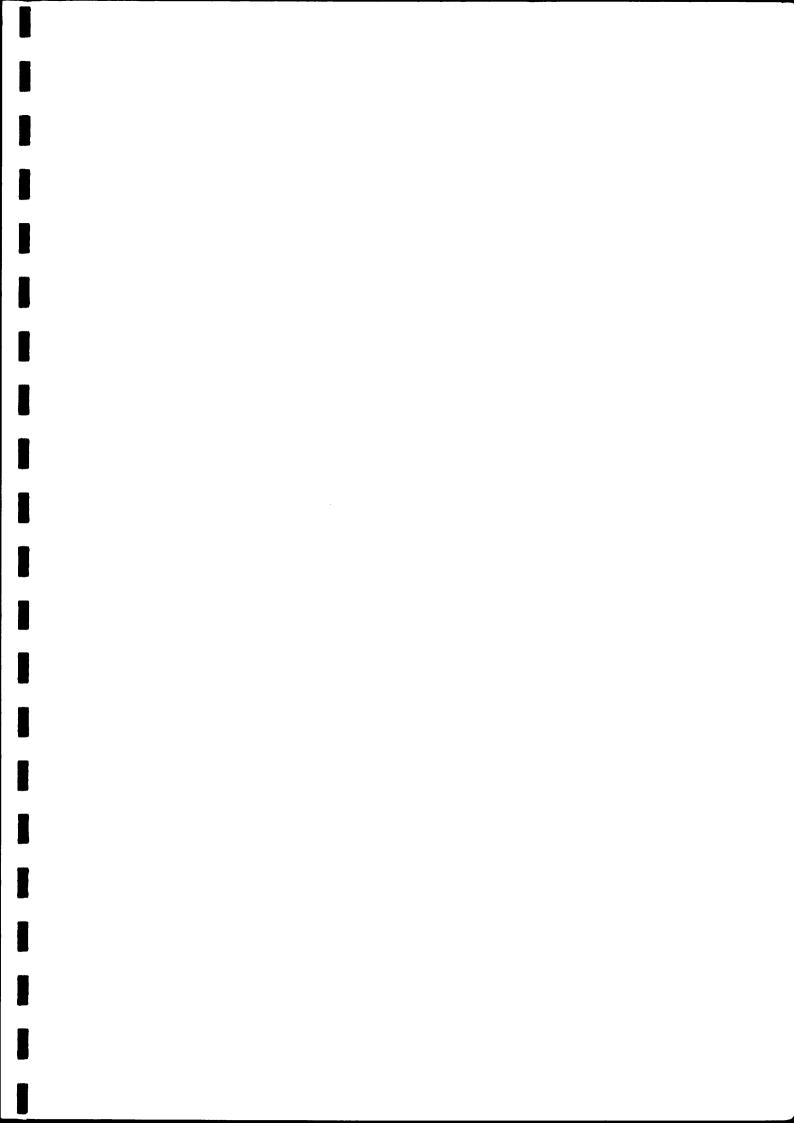
ETUDE DE LA FERTILITE DES SOLS

DU PROJET RETAIL

par Macky Coulibaly

MEMOIRE DE FIN D'ETUDES

présenté pour l'obtention du diplôme de l'Ecole Normale Supérieure


Specialité Biologie

Directeur de Ménoire
Dr Gaïba COULIBALY

Maître de stage

Jean-Yves JAMIN

Office du Niger/Projet Retail Expert R-D SOFRECO/CIRAD Date de Soutenance : Mai 1988

_____) E D I C A C E

Je dédie le présent mémoire à ma famille MAMOUROULAH. Qu'elle trouve ici l'expression de mes sentiments de reconnaissance et de respect.

-:-:-00000-:-:-

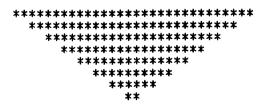
Je remercie mon Directeur de mémoire, Monsieur Gaïba COULIBALY, Professeur à l'Ecole Normale Supérieure (E.N.SUP), qui n'a ménagé aucun effort pour la réalisation du présent mémoire.

A tous mes formateurs, en particulier ceux de l'E.N.SUP, je dis merci pour leur dévouement, leur franchise, leur totale assistance.

J'exprime ma profonde gratitude à :

Mr. Jean Yves JAMIN, responsable de la Recherche-Développement au Projet Retail

Mr. Guy FRANCOIS, chef du Projet Retail et à tout le personnel du dit Projet : Mr. Sidi. Mohamed HOUNIA, Mr. Mamadou KEITA et autres


Mr. Mamadou Kalé SANOGO, chef de la D.R.D. à Niono, et au personnel de la dite D.R.D.

Mr. Thierno TRAORE, chef de service adjoint du Service des Etudes Générales à l'O.N.-Ségou

Mr. M.K. KEITA, Mr. F. VAN DE POL et à tout le personnel du laboratoire des sols de Sotuba.

Mme Touré, secrétaire au Projet Retail, qui a assuré la frappe de la version définitive de ce travail.

Je remercie tous ceux qui, de près ou de loin, ont participé à la réalisation du présent mémoire et à ma formation.

TABLE DES MATIERES

																	page:
Introdu	ction	_	_	-	_	_	-	-	_	_	-	-	-	-	-	_	1
Chapitr	e I :	Aperçu	théor	ique	sur	la	zone	d'é	tude	è		_	_	_	_		3
1.	Loca	lisatio	n		_	_	***		_	,		_		_	_	_	4
2.	Cond	itions	pédogé	néti	ques		_	_	_		_	_		_	_	_	4
	2.1.	Aspect	s géol	ogiq	ues	- Re	elief		_		_	_			_		6
		2.1.1.	Histo	ire	géol	ogic	lue	_	_	_	_			_	_	_	6
		2.1.2.	Roche	mèr	е	_		_	_	_	_	_	_	_	_	_	7
		2.1.3.	Relie	f	_	_	_			_	_		_	_	_	_	8
	2.2.	Climat	_	_	_	_	_		_		_	_	_	_	_	_	9
		2.2.1.	Pluvi	omét:	rie		_	_				_			_	_	9
		2.2.2.	Tempé	ratu	re						_		_		_		12
	2.3.	Saison	s _	_	_				_	_	-		***	_	_	_	12
		2.3.1.	Saiso	n plu	uvie	use	_	_	_		_	_		_			12
		2.3.2.	Saiso	n sè	che			_				_	_	_	_	_	12
	2.4.	Vents	_	_	_	_		_	_		_					_	14
	2.5.	Hydrogi	raphie		_		_	_	_	_		_	_	_	_		14
	2.6.	Végétai	tion	_		_	_	_		_	_	_	_	_	_	_	14
	2.7.	Faune	_	_	_	_	_	_	_	_				_		_	15
	2.8.	Hydrogé	ologi	e	_	_	_	_	_		_	_	_	_	_	_	16
	2.9.	Actions	anth:	ropio	ques		_	_	-	_	-	_		-	-	-	16
3.	Sols		_		_												17

Chap	oitre II : Etude de quelques propriétés physiques et chimiques	_	-	19
Ι.	Etude théorique des propriétés	_		20
	1. Propriétés physiques : granulométrie et texture	_	_	20
	1.1. Définition	_		20
	1.2. Classification des particules	_		20
	1.3. Différentes textures	_		21
	1.4. Méthodes de détermination sur le terrain	_	_	21
	1.5. Importance de la texture	AAAA.		23
	2. Propriétés chimiques		_	23
	2.1. Acidité (pH)	_		23
	2.2. Conductibilité électrique (C.E.)	_		24
	2.3. Bases échangeables	_	_	2 5
	2.3.1. Calcium (Ca)	_	_	25
	a. Etats	_		25
	b. Rôle	_	_	26
	2.3.2. Magnésium (Mg)			27
	a. Etats	_	_	27
	b. Rôle	-	_	27
	2.3.3. Potassium (K)	_	_	27
	a. Etats		_	27
	b. Rôle	_		28
	2.3.4. Sodium (Na)	_	_	28
	2.4. Capacité d'Echange Cationique (C.E.C.)	_	_	28
	2.5. Carbone (C) et matière organique (m.o.)		_	29
	2.6. Phosphore (P)	_	_	29
	2.7. Zinc (Zn)	_	_	30
	a. Etats	_	_	30
	b. Rôle	_		30

II. Etude	prati	ique	_			_	-	-	-	_	-		-	_	-	_	32
1. Tra	vail s	sur]	le t	erra	in	_		_	_	_	_	_	_		_	_	32
1.1	. Choi	ix dı	ısi	te,	Obsei	rvat	ion	des	prof	ils,	Pro	cess	us p	édog	énét	iques	32
	1.1.	1. (Choi	x du	site	e, o	bser	vati	on d	es p	rofi	ls	_	_	_	_	32
	1.1.	2. F	roc	essu	s péc	logé	néti	ques	_	_	_	·	_	_	_	_	36
1.2	. Prél	.èven	ent	d'é	chant	ill	ons	_	_	-	-	_	_	-	_	_	37
2. Tra	vail a	u la	bor	atoii	re	_	_			_	_		_	_			49
2.1	. Prép	arat	ion	des	écha	nti	llon	S		_		_	_	_			49
2.2	. Résu	ltat	s pi	ratio	lues	et :	inte	rpré	tati	on	_	_	-	_	-	_	49
	2.2.	1. R	ésu.	ltats	3 _	_	_	_	_	_	_	_	_		_	_	49
	2.2.	2. I	ntei	rprét	atio	n		_	_		_	_			_	_	49
		а	. Gı	anul	omét	rie	_	_	_		_	_		_	_		49
		b	. Pr	opri	étés	chi	imiqu	ıes		_		_		_		_	52
			-	На	_	_			_	_	_	_	_	_			52
			-	Cond	ucti	bili	té I	Elect	triqu	ıe ((C.E.) _	_	_		_	54
			-	Mati	ère	orga	ıniqı	ie (r	n.o.) _	_	_	_	_		_	55
			-	Phos	phor	e to	tal	(P 1	total	l)	_	_	_	_		_	55
			-	Phos	phor	e as	simi	labl	le (I	o. as	s. l	Bray)	_	_			57
			-	Сара	cité	d'E	Char	ige (atic	niqu	ie ((C.E.C	·.)	_	_	_	57
			-	Calc	ium	(Ca)	et	Magn	iésiu	ım (M	lg) é	échan	geal	oles	_	_	59
			-	Carb	onate	e de	Cal	cium	ı (Ca	сОз)			_		_		59
			-	Pota	ssiu	n éc	hang	eabl	. e		_	_	_	_	_	_	59
			-	Pota	ssiun	n as	simi	labl	e (K	20)	_		_		_		60
			-	Sodi	um (1	la)	_	_		_	_	_	_	_	_	_	60
			-	Zinc	(Zn))	_		_	-	_	_	_	_	_	_	61
Conclusion	_	_	_	_	-	-	-	_			_	_	_	_	_	_	63
Bibiographie	-		_		_'		_	_	_	_		_	_	_		-	65
Annexe _	_	_	_		_	_	_	_		_	_	_	_	_	_	_	68

LISTE DES TABLEAUX, CARTES ET FIGURES

																		page
Tableau	n°	1		_		_	_	_			_		_	_	_	_	-	11
Tableau		2	_	_	-		_	_	_		_	_	_	_	_	_	_	13
Tableau		3	_				_		_	_	_	_	_	_	_	_	_	20
Tableau		4		_		_	_	_	_	_		_	_		_	_	_	21
Tableau		5				_	_				_	_	_	_	_	_		34-35
Tableau		6	_	_						_	_	_	_	_	_	_		38-43
Tableau		7	_	_							-						_	50
Tableau		8							_		_	_	_	_	_	_	_	51
Tableau		9	_	_					_	***	· _			_	_	_	_	52
Tableau				_	_						_	_				_	_	54
Tableau			_	_		_			_	_	_		_		_	_	_	54
Tableau			_					_	_	_	_	_	_	_	_		_	55
Tableau			_	_						_			_	_	_		_	55
Tableau			_		-	_	_	_					_		_	_	_	57
Tableau				_	_							-	_	_	_	_	***	59
Tableau				_	***								_	_		_		61
Tablead	••					_												5
Carte	n°	1		. man							-			- 100-4			-	10
Carte	n°	2	_	_	_			_	_	_	_	-	-	-	_	_	_	33
Carte	n°	3		-							-	-	-	-			_	44
Carte	n°	4		_	_	-		-	_	_	_	_	-		_			45
Carte	n°	5		_		_			***	_	_	-	-	-	_	-	-	45
Carte	n°	6		_	_	_	_	_	-		-	_	-	_	-		_	40
Carte	n°	7	_		_		_	_	-	_	_	_	-	-	_	_	-	47
Carte	n°	8			_	_	_	-		_	_		-	_	-		-	. 40
Figure	n°	1								_	_	_	***	_	_		_	_ 18
Figure	n°		_		_	_	-			_		_	_	_		_	_	. 22
Figure	n°			-	-	_		_	_	_	_	_	_		_	_	_	56
	n°						-		_	_	_		_	_	_		_	_ 58
Figure	n°					-	-	_	_	_	_	_	_		_	_	_	62
Figure					. –	_	_	_	_	_	_	_	_	_		_	_	_ 62
Figure	n	Ø	_	. –			_	_	_			_	_					

INTRODUCTION

L'économie malienne repose essentiellement sur les activités agropastorales. Ces activités occupent environ 85 - 90% de la population active (IER, 1972 et 1977) et ont fourni 44% du produit national brut en 1985 (Direction Nationale de la Statistique et de la planification : DNSP, 1985).

Les produits de l'agriculture et de l'élevage sont consommés sur place ou exportés. Ils étaient à l'origine de 84,8% de la valeur des exportations du pays en 1986 (Synthèse des diagnostics Régionaux -1986).

Compte tenu de l'importance de l'agriculture, plusieurs opérations de développement entre autres : Office du Niger (ON), opération Riz Ségou (ORS), Opération Riz Mopti (ORM), ODIPAC, et des assistances de coopération comme le Projet Retail, participent à sa promotion qui demande une meilleure connaissance des sols, base des activités agropastorales. Nos études concernent cet aspect du développement de l'agriculture et intéressent la zone d'action du Projet Retail.

Le Projet Retail, comme l'ON, L'ORS, l'ORM, s'intéresse au développement de la riziculture, activité agricole de grande importance, si on considère la place qu'occupe le riz dans l'alimentation de la population malienne.

Sa zone d'activité, d'une superficie de 1 400 ha dont 1 300 réaménagés, englobe les terres exploitées par les villages de Niono Coloni (N1), Nango (N3); Sassa-Godji (N4), Sagnona (N6), et est située dans le secteur Sahel de la Zone de Niono sur les périmètres irrigués de l'O.N.

Le Projet Retail a pris le nom du distributeur Retail (canal d'irrigation), du nom de l'Ingénieur Retail qui dirigeait les travaux de construction du dit distributeur. Ce canal alimente en eau les parcelles concernées par le Projet Retail qui apporte un appui à la mise en valeur des terres réaménagées. Selon Jean Yves JAMIN (1987), "le Projet Retail vise l'intensification de la culture irriguée, essentiellement de la riziculture, et une participation plus importante des paysans dans les prises de décisions techniques ou de gestion": par exemple la distribution des terres, qui est faite sur la base de 1 ha/homme de 15 à 55 ans, peut être modulée en fonction du souhait du paysan, de la proposition de l'association villageoise (AV) ou "Ton" villageois.

Pour bien accomplir la mission qu'il s'est fixé, le Projet Retail a créé les fonctions suivantes : Pilotage, Recherche-Développement, Formation et Organisation Paysanne, Suivi-Evaluation, Gestion et Administration, Gestion de l'eau, Entretien du réseau, et travaille en étroite collaboration à l'intérieur comme à l'extérieur avec des structures telles que ON, IER, ADRAO, CIRAD, les organisations similaires, etc...

Le Projet Retail dans sa fonction Recherche-Développement s'occupe de l'expérimentation en milieu contrôlé (essais en regie) et en milieu paysan (tests avec les agriculteurs). Ces essais et tests portent surtout sur la fertilisation, les variétés nouvelles de riz (variété non photosensible à paille courte), les repiquages manuel et mécanique, le travail du sol en boue (puddlage, surfaçage, planage). A ceux-ci s'ajoute, et c'est très important, l'étude de la dégradation des sols par alcalinisation.

Sur les terres exploitées par le Projet, il a été constaté un rabougrissement et un dépérissement des pieds de riz qui semblent être dus à un problème de fertilité du sol. La recherche des causes de ces symptomes est la motivation du présent mémoire qui a pour thème :

Etude de la fertilité des sols du Projet Retail.

Pour ce faire, nous avons retenu l'étude de quelques propriétés physiques et chimiques des sols du Projet Retail telles que :

- granulomètrie, pH, conductibilité électrique (C.E) pour tous les horizons
- teneur en matière organique (M.O), phosphore total et assimilable (P total et P.ass), Potasse, Zinc, Carbonate de Calcium, capacité d'échange cationique (CEC) et les bases échangeables (Ca, K, Mg, Na) pour l'horizon supérieur seulement (O-20cm)

Notre travail comporte:

- un aperçu théorique sur la zone d'étude
- une étude théorique et pratique des propriétés physiques et chimiques
- une conclusion.

CHAPITRE I

APERCU THEORIQUE SUR LA ZONE D'ETUDE

1. Localisation:

Notre zone d'étude se situe dans la zone d'intervention de l'O.N qui appartient au delta central nigérien. Ce dernier comporte deux parties distinctes:

- à l'ouest le delta mort : ainsi nommé parce qu'il se trouve hors des limites d'innondation annuelle du fleuve Niger ;
- à l'Est, le delta vif : parce qu'annuellement inondé par les hautes eaux du Niger et de son défluent le Diaka.

Le delta central nigérien s'étend du 13^{ème} au 18^{ème} degré de latitude Nord et du 14^{ème} au 12^{ème} degré de longitude Ouest (Note de service sur l'ON 1973, archives ON Ségou). Ses limites géologiques sont données sur la carte n°1 p. 5.

La zone d'intervention de l'ON se localise dans le delta mort (qui englobe des contrées du Kala, du Kouroumary, du Méma, du Farimaké) et une partie du Macina (Delta vif).

Elle est limitée :

- au nord par l'anticlinal du Méma
- au nord-ouest par les deux ergs superposés de Sokolo.
- à l'ouest par les monts de Mourdiah
- au sud par le cours du Niger
- au sud-Est et à l'est par le Niger et le delta vif.

2. Conditions pédogénétiques :

Les conditions pédogénétiques sont constituées par l'ensemble des facteurs qui interviennent dans la formation et l'évolution des sols, qui sont définis comme étant la partie superficielle meuble de l'écorce terrestre. Ils constituent un système vivant qui résulte de l'altération d'un substrat lithologique dans une certaine position d'un certain paysage par l'action du climat (précipitations et chaleur) et des agents biologiques (faune et flore microscopique du sol, végétation, homme). Pour Duchaufour (1970), le sol est en effet un milieu complexe caractérisé par une atmosphère interne, une économie de l'eau particulière, une flore et une faune déterminées, des éléments minéraux : bref, il se forme au point d'intersection de l'atmosphère, de l'hydrosphère et de la biosphère.

Ainsi, le sol apparait comme une formation de surface à structure meuble, d'épaisseur variable, issu de la transformation de la roche mère sous l'influence de diverses actions physiques, chimiques, biologiques. L'évolution du sol conduit à la différenciation de strates successives de structure, de texture et de couleur différentes, appelées horizon.

Pour mieux cerner certaines conditions pédologiques, nous les traiterons au niveau du delta central nigérien et non uniquement dans la zone d'activité du Projet Retail.

2.1. Aspects géologiques et relief

Les caractéristiques topographiques et pédologiques justifiant l'aménagement du delta moyen nigérien ne peuvent se comprendre que par l'histoire géologique de la région.

2.1.1. Histoire géologique:

Les deltas vif et mort résultent de l'évolution orogénique d'une vaste région. La dalle primaire schisto-gréseuse qui descendait jusqu'aux salines de Taoudénit, fut au tertiaire l'objet d'un effondrement qui détermina un immense fossé de 60 à 100 m de profondeur dans l'axe Ségou-Djénné-Niafunké-Sokolo. Ce fossé servit d'exutoire au Niger supérieur venant du massif du Fouta Djalon et coulant vers le nord à partir de la façade sud-Est du massif de Mourdiah, suivant le tracé de l'actuel "Fala" de Molodo. Cette cuvette inclinée Nord/Nord-Ouest communiquait avec la dépression du Hodh vers où le Niger se dirigeait, et qu'il traversait.

A cet effet, il y a lieu de s'interroger si le fleuve Niger allait rejoindre l'actuel bassin du fleuve Sénégal ou s'il se perdait au sortir de la dépression du Hodh. Bien que l'hypothèse soit controversée, un témoignage reste encore visible : c'est la vallée du Serpent, qui rejoignait le fleuve Sénégal au niveau du coude de capture du Baoulé.

La formation des ergs de Sokolo par suite d'une période aride sépara le delta central nigérien de la dépression du Hodh. Le rehaussement de ces ergs accentua l'assèchement progressif du delta dans sa partie occidentale. Ainsi le fleuve Niger, selon Y. Urvoy (1942), ne trouvant plus d'exutoire, poursuivit le colmatage du fossé d'effondrement par le dépôt d'importantes couches d'alluvions. Ces dernières, d'après B. Dabin (1951), atteignent 5 à 6 m dans le Kala et plus de 20 m d'épaisseur dans le Méma.

Le fleuve Niger finit par trouver, il y a quelques millions d'années, par le percement du seuil de Tossaye, un passage vers le golfe de Guinée. Le "Djoliba", fleuve amont, qui empruntait le talweg du Niger actuel jusqu'à la zone lacustre communiqua avec l'Issa Ber (Niger Saharien venu des Iforas et de l'Aĭr), à la suite d'une série de phénomènes de capture à l'Est de Tombouctou. Ces captures donnèrent au Niger son cours actuel et entrainèrent le dessèchement progressif de la partie Nord et Ouest du delta. C'est ainsi que la région située à l'ouest de la ligne Markala-Niafunké, n'est plus inondée et constitue le delta mort ; celle de l'Est constitue le delta vif.

De même, les "Fala" de Molodo et de Boky-Wéré, anciens défluent du Niger furent isolés puis taris. Les dépôts alluvionnaires provoquèrent le comblement de ceux-ci au voisinage du point de défluence. Il n'en reste plus alors qu'un chapelet de mares qui se remplissent et se vident au rythme de la saison des pluies et de la crue. Ces marigots cessant de débiter et avec la baisse de la nappe phréatique, les régions du Kala, du Kouroumary, du Méma et du Farimaké, jadis peuplées, évoluèrent progressivement vers l'aridité.

Ces données géologiques ont conduit à la constatation que l'on pourrait revivifier le delta mort, par une irrigation appropriée, en mettant en eau les anciens défluents du Niger. Cela fut concrétisé par l'établissement de l'Office du Niger d'où : le delta réssuscité.

2.1.2. Roche mère:

A l'exception de l'eau et de la glace, tout constituant minéral ou organique entrant dans la composition de l'écorce terrestre est appellé roche. La roche est généralement solide, mais peut être aussi liquide ou gazeuse. La roche présente des propriétés qui interviennent activement dans la pédogénèse :

- la fissuration : facilite la pénétration des agents atmonsphériques et biologiques ;
- la perméabilité : liée à la porosité, elle renseigne sur l'écoulement, la circulation de l'eau et des gaz dans le sol;
- la nature des minéraux : détermine la vulnérabilité de la roche et la richesse du sol ;
- l'acidité et la basicité : instiguent le chimisme et l'altération de la roche.

Ces propriétés font que la roche mère influe sur la typologie des sols.

Par exemple les sols lithomorphes ou sols jeunes (seul la partie minérale forme le sol) sont marqués par l'influence prédominante de la roche mère (un sol peut

être formé intégralement à partir de la roche sous-jacente : celle-ci est dite roche mère pour le sol). Il arrive parfois que le matériel qui a donné la matière minérale du sol ne soit pas la roche trouvée à la partie inférieure du profil défini comme étant la coupe verticale du sol depuis la surface jusqu'à la roche mère. Plusieurs explications sont possibles pour cet état de fait :

- la roche du substratum est recouverte par un revêtement allochtone (alluvions, colluvions);
- la roche avait donné un sol, celui-ci, enlevé ou non, a été recouvert par des alluvions, des colluvions.

Dans notre zone d'étude, les travaux de Y. Brumet-Moret et al (1986) ont confirmé B. Dabin (1951) et Y. Urvoy (1942) selon lesquels le substratum du delta est schisto-gréseux et recouvert d'alluvions. Ces alluvions, constituées de quartz (arrachés aux monts manding), d'argiles, de limons silicieux, d'oxydes de fer (issus des sols latéritiques du haut Niger) et des produits de désagrégation du substratum gréseux forment le matériau parental des sols du delta. Il faut noter que nos investigations ne nous ont pas permis d'avoir la composition minéralogique du substratum gréseux.

2.1.3. Relief:

Le relief est constitué par les différences d'altitudes des parties de l'écorce terrestre. Il se manifeste par les montagnes, les collines, les plateaux, les vallées. Il intervient sur la pédogénèse par agents interposés. Il agit sur le climat (inégale repartition de la chaleur, de la lumière, de l'humidité) et sur la végétation. Les pentes facilitent le drainage et les basfonds la formation des sols hydromorphes.

Dans le delta, le comblement ci-dessus mentionné (cf 2.1.1) a transformé la zone en une pénéplaine ; zone plate dont l'altitude varie de 100 à 300 m (Jean Gallais, 1967). La monotonie et la platitude d'ensemble du delta mort ne sont interrompues que par des cordons dunaires qui jalonnent des contrées comme le Kala, le Kouroumari. Les traces d'anciens défluents du Niger ("Fala") sillonnent les plaines. Ces "Fala" dont les plus importants sont ceux de Molodo et de Boky-Wéré, dominent les terres qui les bordent et jouent en conséquence un rôle considérable dans l'irrigation des terres du delta mort. Le facteur topographique favorable à l'aménagement est qu'il existe un pendage général faible : 5cm/km en direction Nord (Jean Gallais, 1967).

2.2. Climat:

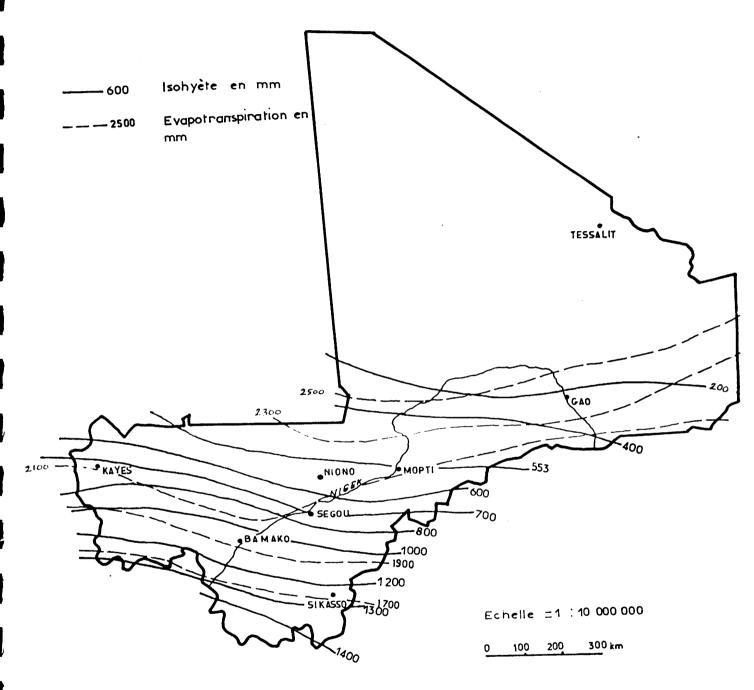
Selon Hanne cité par Duchaufour (1970) le climat est l'ensemble des phénomènes météorologiques qui caractérisent l'état moyen de l'atmosphère en un point donné de la surface terrestre. Il se caractérise par des indices qui définissent les états du climat : par exemple l'indice de Transeau (I).

- si D1 le climat est humide
- si I<1 le climat est aride.

Dans la formation des sols, le climat est un facteur abiotique de première importance.

Le climat a un rôle de coordination des processus de décomposition des substances minérales et organiques et des mécanismes d'évolution du sol.

Il existe une relation considérable entre le type de sol et le climat. A cet effet, Dokoutchaiev formula la loi de zonalité énoncée comme suit : "dans une même zone climatique, les processus de décomposition de roches diverses, aboutissent à la formation de sols de même type si la durée de la pédogénèse est suffisante".


Le climat agit sur la pédogènèse par ses composantes telles que l'humidité et la température. Ainsi dans le climat tropical l'élévation de la température accentue considérablement la décomposition des roches. L'excès d'humidité conduit à l'anaérobiose et à l'accumulation des débris végétaux sous forme d'humus (Tourbe).

2.2.1. Pluviométrie:

Le delta central est compris entre les isohyètes 700 mm au sud et 150 mm au Nord (cf carte n°2 p. 10).

Les relevés pluviométriques de 1951 à 1980 de la station du Sahel de Niono (constituant le tableau n°1 p. 11), montrent que la moyenne pluviométrique annuelle était de 572 mm dans notre zone d'étude. Selon le document Ressources Terrestres du Mali Tome III de l'ORSTOM (1980), la moyenne pluviométrique annuelle à Niono varie autour de 574 mm.

PRÉCIPITATIONS , TEMPÉRATURES ET ÉVAPOTRANSPIRATION

Carte Nº2: Mali: précipitations, températures et évapetranspiration

Tableau n° 1: PRECIPITATIONS MOYENNES ANNUELLES DE 1951 A 1980
(STATION SAHEL NIONO)

ANNEE	PLUVIOMETRIE MOYENNE ANNUELLE en mm
1951	759,2
1952	777,4
1953	531,8
1954	649,2
1955	736,6
1956	750,7
1957	600,3
1958	755,0
1959	549,0
1960	485,0
1961	662,8
1962	560,0
1963	595,5
1964	(162,5)
1965	820,1
1966	394,8
1967	676,6
1968	486,5
1969	514,5
1970	643,1
1971	-
1972	454,8
1973	318,2
1974	383,1
1975	568,2
1976	631,4
1977	505,7
1978	627,8
1979	(549,5)
1980	-
MOYENNE GENERALE	572,2

2.2.2. <u>Température</u>:

Sur la période 1951-1980, dans la zone de Niono, la température annuelle moyenne est de 29°C comme l'indique le tableau n°2 p. 13. Ce facteur thermique influe beaucoup sur les réactions chimiques, biologiques et biochimiques qui se passent dans le sol.

Par exemple, la décomposition rapide de la matière organique dans les sols tropicaux relève en partie de la température élevée des dites régions (cf tableau n°2 p. 13).

2.3. Saisons:

Dans notre zone d'étude, le climat de type sahélien se caractérise par deux saisons : une saison pluvieuse (l'hivernage) et une saison non pluvieuse (saison sèche).

2.3.1. Saison pluvieuse:

Leur durée et leurs quantités ne permettent que la culture des variétés végétales hâtives (mil), plus précisément sur les terres exondées où les eaux de pluie restent la seule source d'humidité. Elles sont à l'origine d'une agriculture fluctuante. Comparativement aux eaux de pluie de la zone Guinéenne, celles de notre zone d'étude ont peu d'influence sur le régime du Niger. Néanmoins leurs effets peuvent s'avérer importants sur l'agriculture des parcelles irriguées.

2.3.2. Saison sèche:

Elle dure d'octobre-novembre à mai-juin. Elle se divise en une période sèche froide de mi-novembre à mi-février et une période sèche chaude de mi-février à mi-juin.

En période sèche froide, on enregistre les températures les plus basses de l'année. Le tapis herbacé se déssèche et les arbres caducifoliés commencent à perdre leurs feuilles

En période sèche chaude, il fait très chaud durant la journée et on observe en début d'après-midi des manifestations de grands tourbillons, qui transportent avec eux les éléments fins du sol. L'évapo-transpiration est très élevée.

Tableau n° 2: TEMPERATURES MOYENNES ANNUELLES DE 1951 A 1980 (STATION SAHEL NIONO)

ANNEE	TEMPERATURE MOYENNE ANNUELLE EN °C
1951	29,9
1952	29,5
1953	29,9
1954	29,7
1955	30,1
1956	30,0
1957	29,1
1958	29,8
1959	29,2
1960	29,1
1961	_
1962	29,7
1963	29,4
1964	30,0
1965	29,5
1966	30,3
1967	29,5
1968	29,8
1969	30,9
1970	29,9
1971	-
1972	27,3
1973	27,8
1974	26,8
1975	26,9
1976	26,7
1977	27,6
1978	27,2
1979	27,9
1980	_
MOYENNE GENERALE	29 ° C

2.4. Vents:

Dans le delta on note deux principaux vents (Y. BRUMET-MORET et al 1986 et R. RUBON et M. SACX 1965) qui sont :

- l'harmattan : vent chaud et sec, soufflant en saison sèche de l'Est ou Nord-Est au Sud-Ouest, qui a une action desséchante et érosive ;
- la mousson : issue de l'anticyclone de Sainte Hélène, elle souffle du Sud-Ouest au Nord-Est ; chargée d'énormes quantités de vapeur d'eau prise audessus de l'océan Atlantique, elle apporte la pluie.

Entre l'harmattan et la mousson il y a un mouvement de bascule. La mousson dans son incursion vers le Nord, pénètre en coin sous l'harmattan; la surface de contact entre eux, bien connue par sa trace sur le sol, est le front intertropical (FIT). Le déplacement de ce dernier est conforme au mouvement de bascule. Il donne lieu à des formations nuageuses très importantes et à des averses orageuses vers le Nord.

La vitesse des vents dans le delta central nigérien est très variable : elle peut aller de moins de 1m/s à près de 21 m/s (Y. BRUMET-MORET et al 1986).

2.5. <u>Hydrographie</u>:

Dans la zone d'activité du Projet Retail, l'hydrographie est entièrement dominée par les réseaux d'irrigation alimentés par le Niger, et les quelques mares et marigots dont les régimes sont fonction de l'hivernage. Les multiples canaux d'irrigation toujours en eau et tous les autres systèmes de cours d'eau confèrent à notre zone d'étude un aspect intrazonal.

2.6. <u>Végétation</u>:

Située en zone sahélienne, la zone d'activité de l'O.N. présente une steppe arbustive (Kala) et une steppe herbeuse (Macina). Néanmoins on y trouve quelques espèces végétales caractéristiques de la savane, en cours de disparition d'ailleurs. Sur les terres exondées on peut recencer les espèces suivantes:

- Pterocarpus lucens ; Adansonia digitata ; Boscia sénégalensis ; Acacia seyal ; Commiphora africana ; Guiera senegalensis ; Acacia tortilis, Calotropis procera ; Combretum ghazalense ; Anogeinus liocarpus ; Acacia pinnata ; Acacia ataxacanta ; Balanites egyptica ; Cymbopogon schaenanthus ; Cymbopogon gayanus.

A côté de ceux-ci existent :

- Kaya senegalensis; Manguifera indica; Azadirachta indica.

Quant aux terres inondées, la végétation composée essentiellement d'Oryza sativa est parsemée de Cypéracées (Cyperus rotundus ; Cyperus odoratus) ; d'Elcocharis élégans ; de Fimbristylis miliacea ; de convolvulacées (Ipoméa congesta ; Ipoméa aquatica).

2.7. Faune:

Le delta mort présente de grandes régions propices à l'élévage comme la contrée de Niono qui est un véritable pâturage. Effectivement, on y rencontre de nombreux troupeaux de bovins, d'ovins et de caprins; ces animaux par lour piétinement, surtout les caprins, dégradent les sols. La partie arable, rendue meuble, devient sensible à l'érosion. Ainsi les sols perdent leur structure et des éléments nutritifs.

Dans les rizières, la présence de l'eau (provoquant une anaérobiose), de produits énergétiques (substances organiques végétales), est favorable à certains micro-organismes (genre Bacillus), qui élaborent des substances favorisant la réduction du fer (Fe). Les résultats de l'expérience de Berthelin et J.C. Leprun (1979) dans ce cadre confirment qu'en présence d'un milieu anaérobie, riche en glucose et ensemencé en micro-organismes, et seulement dans ces conditions, le fer et le manganèse (Mn) sont solubilisés.

Cette réduction du fer est une des caractéristiques de l'hydromorphie, remarquable par l'aspect très souvent bariolé du profil en certains endroits.

Les termites se manifestent sur toutes les terres de la zone; toutefois, leur action se remarque peu sur les "Moursi". D'ailleurs, Henri Ehrart dans son rapport (1948), cité par B. Dabin (1954), note que la différence de fertilité entre les terres à nodules (c'est-à-dire "Moursi") avec d'autres terres plus acides, s'explique seulement par la présence des termitières sur ces dernières et leur absence sur les premières, en pensant que l'activité biologique des termites, améliore la fertilité du sol. Mais pour Dabin, cette explication parait insuffisante et la présence des termitières est une conséquence de la nature du sol, plûtôt qu'une cause de celle-ci. En plus, il ajoute n'avoir jamais pu établir une relation bien nette entre la présence ou l'absence des termitières et la fertilité des sols en rizières. En outre, il fait ressortir que lorsqu'il existe une termitière sur un sol acide, son pH est généralement plus élevé que le sol environnant, et voisin de la neutralité.

L'action de la faune sauvage, surtout des animaux fouisseurs, est très peu observée. Les rats se livrent à la dégradation des digues et diguettes en se procurant un abri.

2.8. Hydrogéologie:

A la suite de nos entretiens avec Monsieur KEITA (vieil homme de 80 ans, mais très lucide, lettré et temoin oculaire de la construction du barrage de Markala) il est ressorti que, jusqu'en 1953 encore, certaines localités de la zone de Niono souffraient du manque d'eau. Cela relevait du fait qu'elles étaient loin des canaux d'irrigation d'une part, et que le niveau de la nappe souterraine était très éloigné d'autre part. En exemple, il cita le cas de l'ex-Fouabougou (village qui était voisin de Sagnona), pour lequel il a participé aux activités de ravitaillement en eau. De toutes ces activités, la réalisation d'un puit de 45 m de profondeur, qui n'avait pas encore atteint la nappe souterraine, a le plus frappé notre attention; toujours selon le vieux KEITA, il faudra attendre 1965 pour voir l'ex-Fouaboubou abandonné par ses habitants à cause de l'inondation.

Les propos du chef de village de l'actuel Fouabougou (à 3 km du Km 30, d'où 8 km de Niono) et des sieurs Samba Lamine TRAORE (Directeur Général de l'Office du Niger de 1960 - 1968) et Sounkalo (ancien secrétaire général des syndicalistes de l'O.N. depuis 1960) abondent dans le même sens. Dans le film "la Colonisation" de Claude Massot (1984), le problème du manque d'eau fut évoqué lors de l'installation des colons.

Si hier l'eau posait des problèmes cruciaux par sa rareté dans les horizons, aujourd'hui un trou d'un mètre de profondeur (ou moins) suffit pour la rencontrer ou la sentir en saison sèche dans les rizières. Les quelques puits que nous avons recensés dans les quatre villages concernés par le Projet et dans la ville de Niono ont au plus une profondeur de deux mètres et demi (2,5m) en moyenne. Ils ne tarissent pas en saison sèche, et en hivernage le niveau de la nappe se trouve en moyenne à cinq centimètres (5cm) du bord interne de la margelle.

2.9. Actions anthropiques:

L'action de l'homme est très variée. Elle relève de ses activités économiques en général. Les méthodes culturales, l'usage des engins lourds influent beaucoup sur les propriétés du sol.

Les récoltes faites, les paysans dépouillent les champs des chaumes dans l'optique de garantir les réserves de nourriture pour le bétail en saison sèche, durant laquelle les ressources alimentaires se font rares. Les sols se trouvent alors exposés à l'érosion qui pourrait être attenuée par ces pailles qui de plus pourraient servir d'engrais vert.

La pratique des feux de brousse, dans le but de nettoyer les champs est néfaste. Le feu détruit de nombreuses colonies de micro-organismes, jouant un rôle très important dans la fertilisation du sol (Nitrobacter, Clostridium).

Si certaines des actions humaines conduisent à la dégradation du sol, d'autres au contraire l'enrichissent en éléments nutritifs pour les cultures et améliorent sa structure, par exemple l'entretien du sol par l'apport d'engrais.

3. <u>Sols</u>:

Les sols du delta sont d'origine alluvionnaire; B. Dabin, 1951, les a décrits dans une classification vernaculaire (Bambara) basée sur leur texture (au toucher), leur structure, leur situation topographique. Cette classification utilise l'appelation locale des sols et respecte leur situation topographique (c'est-à-dire des points élevés vers les zones basses, cf fig. n°1 p. 18).

<u>Classification vernaculaire des sols</u>: (B. Dabin 1951)

"Séno" : formation dunaire très sableuse

"Danga": sol beige, sablo-limoneux, à structure battante

"Dangablé": sol ocre-rouge, plus ou moins foncé, limono-sableux à limonoargileux, généralement friable en surface sauf dans les zones

Spedies on it part the convert it gravillons forruginous.

"Dangafing": sol beige-noirâtre analogue au "Danga" mais plus riche en

limon et en matière organique.

"Dian": sol brun argilo-limoneux, très compact, présentant des fentes

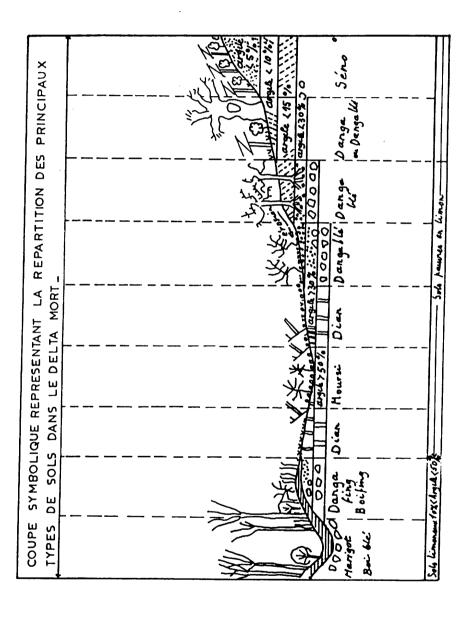
de retrait

"Dian-perré" : sol "Dian", très argileux, largement crevassé.

"Moursi": sol noir, très argileux, à structure friable en surface,

contenant de nombreux nodules calcaires, largement crevassé.

"Boi": sol gris ardoisé, limoneux, compact, pouvant être crévassé


"Boiblé": sol "Boi" avec de nombreuses tâches ocres, ferrugineuses,

généralement fond de mare ou marigot.

"Boifing": sol noir, limono-argileux, généralement friable en

surface, riche en humus, non crevassé.

De nombreux sols du delta ont été ou sont soumis à un engorgement d'eau temporaire ou permanent ; la présence de taches rouilles, grises ou bleues (sur terre fraiche) est la preuve de l'hydromorphie passée ou actuelle dans ces sols.

: Coupe symbolique illustrant la répartition des principaux types de de sols dans le delta mort. Fig n°1

CHAPITRE II

ETUDE DE QUELQUES PROPRIETES PHYSIQUES ET CHIMIQUES

I: ETUDE THEORIQUE DES PROPRIETES :

Le sol, formation naturelle de surface meuble, est caractérisé par des propriétés physiques, chimiques et biologiques bien déterminées qui lui confèrent son individualité propre et déterminent sa fertilité. Nous en étudions ici quelques unes, physiques et chimiques. Au laboratoire les méthodes de détermination de ces propriétés sont multiples. Nos échantillons ont été sujets de celles adoptées par le laboratoire des sols de Sotuba (Bamako), qui sont largement décrites par M. Keita et F. Van Der Pol (1986).

1. Propriétés physiques : granulométrie et texture :

1.1. <u>Définition</u>:

Le sol est formé de particules solides de dimensions variables. La composition granulométrique est la composition élémentaire du sol quand tous les agrégats ont été dissociés et quand les particules qui les constituaient ont été rangées par classe de dimension. On obtient alors des fractions granulométriques.

1.2. Classification des particules :

Les classifications des éléments sont nombreuses. Nous citerons ici celle d'Atterberg, adoptée par l'Association Internationale de la Science des sols (A.I.S.S.) en 1926. Elle est la suivante (tableau n°3 p. 20):

Tableau n°3: classification des particules (Atterberg) adoptée par l'AISS (1926)

Tailles	Particules						
> 20 cm	Blocs						
de 20 à 2 cm	Cailloux						
de 2 cm à 2 mm	Graviers						
de 2 mm à 200 mu	Sables grossiers						
de 200 mu à 20 mu	Sables fins						
de 20 mu à 2 mu	Limons						
< 2 mu	Argiles						
В при	TORUTO TO THE CONTROL OF THE STATE OF THE ST						

Remarque:

Les particules des fractions granulométriques sont issues de la désagrégation de la roche mère du sol par des processus pédogénétiques, physiques, chimiques et biologiques.

1.3. <u>Différentes textures</u>:

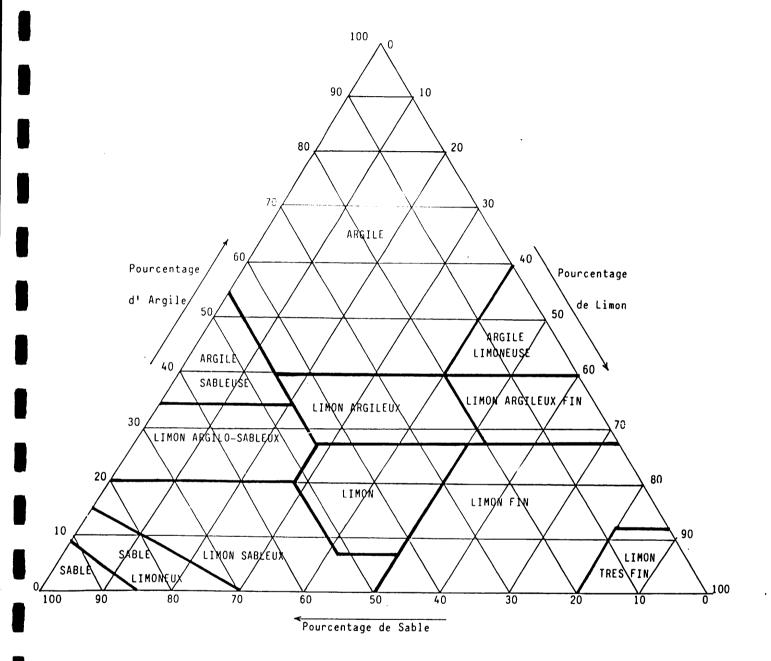
Il existe plusieurs textures fournies par le diagramme des textures utilisé au laboratoire des sols de Sotuba (fig n°2 p. 22).

Remarque:

Les sols à texture fine ou argileux sont plastiques, difficiles à travailler mouillés (adhérents) et ont une forte capacité de retention d'eau,

les sols limoneux sont des terres battantes (surface devenant lisse après une pluie et présentant un aspect brillant au soleil).

les sols sableux ont une réserve en eau faible.


1.4. Méthodes de détermination sur terrain (voir tableau n°4 p. 21)

On humecte un peu de sol, le modèle entre les mains et essaye de former un anneau. Selon que les particules se scellent ou non, forment un cordon ou un anneau avec plusieurs cassures, peu de cassures ou sans cassure, on donne la texture.

Tableau n°4: Détermination de la texture sur le terrain (Duchaufour 1970).

1	Texture	Morphologie
1	sable (S)	
1	Sablo-argileux (SA)	
1	Limon moyen sableux (LMS)	
1	Limon leger	
	Limon argileux (LA)	 → O
	Argile (A)	 → O

Fig n°2 : TRIANGLE DE TEXTURE UTILISE PAR LE LABO DES SOLS DE SOTUBA

1.5. Importance de la texture :

L'analyse granulométrique présente un grand intérêt, du fait qu'elle permet de savoir et d'expliquer non seulement les particularités du processus de formation des sols, mais aussi celles de leurs propriétés chimiques et surtout physiques. Les résultats de l'analyse granulométrique permettent de :

- définir le type de la fraction granulométrique,
- fournir les éléments pour prévoir et expliquer les propriétés physiques,
- déterminer les conditions ou les résultats de la pédogénèse,
- donner des indications sur le comportement d'un sol cultivé à l'emploi des techniques culturales.

Partant, la composition mécanique joue un rôle considérable en agriculture. Elle détermine le degré de porosité et de perméabilité du sol.

2. Propriétés chimiques :

2.1. Acidité (pH):

L'acidité du sol est due à la présence d'ions H' dans la solution du sol et dans le complexe absorbant. On distingue l'acidité effective et l'acidité potentielle du sol qui sont étroitement liées. La première résulte des ions H' de la solution du sol.

Elle est déterminée dans un extrait aqueux et mesurée par le pH qui est le logarithme négatif de la concentration des ions H dans la solution. On appelle aussi pH eau. La deuxième se subdivise en acidité d'échange et acidité hydrolytique. En interagissant avec des solutions de sols, les ions H et Al et a qui se trouvent dans le complexe absorbant du sol sont repoussés de leur état absorbé et acidifient la solution du sol. Il s'y forme alors de l'acide chlorhydrique et du chlorure d'aluminium (sel hydrolytiquement acide) suivant les réactions :

$$[CAS]_{H}^{\Lambda_{1}} + 4 KC1 == [CAS]_{K}^{K} + HC1 + AlC1_{3}$$

$$[CAS] : Complexe Absorbant du Sol$$

$$AlCl_{3} + 3H_{2}O == 3HC1 + Al(OH)_{3}.$$

L'acidité produite par les ions H+ et Al+++ se trouvant à l'état absorbé et capables de passer dans la solution sous l'action sur le sol d'un sel neutre quelconque porte le nom d'acidité d'échange. Elle est déterminée en traitant le sol par une solution de KCl à 1 n, d'où la désignation de pH KCl.

Dans notre étude nous nous intéressons aux pH eau et KCl.

Suivant la valeur du pH eau (pH), la réaction de la solution du sol est définie comme suit :

pH > 9 : extrèmement alcalin

pH = 8,1 å 9: très alcalin

pH = 7,5 à 8,1 : moyennement alcalin

pH = 7,0 à 7,5 : peu alcalin

pH = 6,5 å 7,0 : neutre

 $pH = 6,0 \ aa 6,5$: peu acide

pH = 5,2 å 6,0 : movennement acide

pH < 5,2: très acide.

Une réaction alcaline ou fortement acide de la solution a une action néfaste sur le développement des plantes et des microorganismes.

Le pH a une influence sur la mise à la disposition de la plante des éléments nutritifs et sur leur assimilation. Les ions NH4⁺ pour être convenablement utilisés, exigent des pH élevés (pH 7 à 8) et les ions nitriques un pH 6 (R. Heller 1969). Pour la majorité des plantes, le potassium (K) et le soufre (S) sont mieux assimilés à partir de pH 5; le phosphore (P) à partir de pH 6,5; le Ca et le Mg à partir de pH 7, les oligo éléments excepté le molybdène à des bas pH qui sont nécessaires pour la solubilisation des phosphates (Truog, 1930).

En général, les bas pH diminuent la pénétration des cations comme si une compétition existait entre eux et les ions H⁺, alors que ce sont les pH élevés qui entrainent une baisse de l'absorption des anions. Le pH joue un grand rôle dans le développement des plantes. Selon P. Smirnov et al (1977), le riz pousse le mieux si le milieu est aux environs de la neutralité (pH 6,5 à 7,5).

Les sols acides ont des propriétés défavorables. Leurs fractions colloïdales sont pauvres en cations basiques. Dans ces sols, l'activité des bactéries nitrifiantes (fixatrices d'azote) et d'autres microorganismes est attenuée. Elles préfèrent des pH de l'ordre de 8 et plus (R. Heller, 1969).

2.2. Conductibilité électrique (CE):

Elle renseigne sur la salinité des terres et s'exprime généralement en millimhos (mmhos). 1 mmhos correspond approximativement à 640 mg de sel pour 100 g de sol pour un extrait salin au 1/10. 11 existe aussi des extraits au 1/2,5 à la température de 25°C.

Pour les extraits au 1/2,5 couramment utilisés, les échelles de salinité sont les suivantes selon Jean Paul Dobelmann (1976) :

Non salins < 0,25 mmhos légèrement salins: 0,25 - 0,50 mmhos salins: 0,50 - 1,00 mmhos très salins: 1,00 - 2,00 mmhos extrèmement salins: > 2,00 mmhos

Les sols dits halomorphes ou sodiques présentent un taux de salinité élevé. En période d'assèchement, ces terres sont marquées en surface par des affleurements blancs provenant des chlorures ou des sulfates, ou des taches noires pulvérulentes provoquées par la décomposition de la matière organique en présence de carbonate. Elles ont de mauvaises propriétés physiques. Humides, elles se gonflent; sèches, elles durcissent, forment une croûte, se fendent en mottes et leur travail devient alors difficile.

L'horizon sodique compact, empêche le système radiculaire de pénétrer en profondeur. Les terres à salinité élevée sont impropres à toute culture, excepté le riz en submersion contrôlée.

2.3. Bases échangeables:

Les cations échangeables Ca⁺⁺, Mg⁺⁺, K⁺ et Na⁺ jouent un rôle considérable dans la nutrition minérale des plantes.

2.3.1. Calcium (Ca):

a. Etats:

Les états du Ca sont les suivants par ordre de solubilité croissante en présence d'eau chargée de CO2 :

- le calcium des minéraux primaires tels que les feldspaths, les plagioclases, les amphiboles, etc;
- le calcaire inactif : c'est le carbonate de calcium en grains grossiers ; il constitue une réserve évoluant à la longue vers la forme active ;
- le calcaire actif : c'est le carbonate de calcium en grains très fins (fraction argileuse ou limoneuse) ; il enrichit les solutions du sol en bicarbonates solubles qui saturent progressivement le complexe absorbant suivant les réactions ci-après :

$$CaCO_3 + CO_2 + H_2O == Ca(HCO_3)_2$$

carbonate de calcium bicarbonate de calcium

 $Ca(HCO_3)_2 + sol H_2 == sol Ca + CO_2 + H_2O$

- Le calcium échangeable : c'est surtout le bicarbonate de calcium ci-dessus noté.

b. Rôle:

Le calcium est considéré comme un des plus importants éléments du sol. C'est un important facteur de structuration. On l'utilise pour la correction des sols acides et basiques, respectivement par le chaulage et le plâtrage, ou gypsation.

Lors du chaulage, la chaux apportée au sol réagit avec le complexe dessaturé suivant la réaction :

[CAS]
$$_{H}^{H}$$
 + 2 Ca(OH)₂ == [CAS] $_{Ca}^{Ca}$ + 4H₂O [CAS] : Complexe Absorbant du Sol

La chaux neutralise aussi les acides organiques libres selon la réaction :

2 RCOOH +
$$Ca(OH)_2$$
 == (RCOO) $_2Ca$ + $2H_2O$ acide organique

En éliminant l'acidité, le chaulage crée un milieu favorable au développement des plantes et des microorganismes comme les bactéries fixatrices d'azote.

Le plâtrage ou apport de sulfate de calcium est conseillé pour des sols renfermant au maximum 20% de Na. Au-dessus de 20% de Na, le sulfate de sodium formé est nocif. La réaction symbolisant le plâtrage est :

$$[CAS]_{Na}^{Na}$$
 + $CaSO_4$ == $[CAS]_{Ca}$ + Na_2SO_4
sulfate de calcium sulfate de sodium

Le calcium, chez les végétaux supérieurs, s'accumule dans la lamelle moyenne de la membrane sous forme de pectate de calcium qui assure pour une grande partie l'insolubilisation du ciment des membranes squelettiques. Il intervient dans la régulation de la perméabilité cellulaire en activant la pénétration de certains éléments (tel le molybdène : Mo) et réduit celle d'autres

tel que le magnésium (Mg); mais généralement selon R. Heller (1969), le calcium diminue la perméabilité cellulaire et est même antagoniste de la plupart des ions métalliques. Cette action antagoniste peut être souvant néfaste. Un excès de Ca peut provoquer la chlorose ferrique chez les plantes même si le fer est en quantité suffisante dans le sol.

La carence en calcium chez les végétaux entraîne une modification morphorlogique des feuilles. Leurs bordures se recourbent vers la face inférieure en prenant un aspect déchiqueté.

2.3.2. Magnésium (Mg):

a. Etats:

Le magnésium accompagne presque toujours le Ca. On le trouve dans des minéraux primaires comme la dolomie. Sur le complexe des sols, le Mg est généralement minoritaire par rapport au calcium.

b. Rôle:

Du point de vue rôle, le Mg est indispensable à l'élaboration de la chlorophylle. Sa carence provoque une chlorose avec sur les feuilles des zones jaunâtres très caractéristiques. Il facilite l'absorption des ions phosphoriques d'où l'importance dans les milieux nutritifs du rapport Mg/P. A cause de sa tendance à former des hydrates, le magnesium joue un rôle important dans le maintien de l'hydratation du cytoplasme.

2.3.3. Potassium (K):

a. Etats:

Le potassium existe comme tenon dans les feuilles de certains minéraux (muscovite, biotite). Parmi les argiles, seule l'illite proche des micas contient 4 à 5 % de K sous la forme K20 (Duchaufour, 1970).

Il existe aussi dans la glauconie.

L'ion K' absorbé par les colloïdes, échangeable, ne représente pas plus de 0,8 à 1,5 % de la teneur totale du sol en potassium (P Smirnov et al, 1977).

b. Rôle:

En ce qui concerne son rôle, le potassium joue un rôle essentiel dans l'alimentation des plantes. Selon P. Smirnov et al (1977), le K est de tous les éléments minéraux celui utilisé par les plantes en plus grande quantité (60 à 80 kg de K20/ha pour les céréales, 150 à 250 kg de K20/ha pour la pomme de terre, etc...).

L'ion K⁺ intervient dans le métabolisme cellulaire et augmente la résistance des plantes à la sécheresse en élevant l'hydratation et la viscosité des colloïdes. Il est indispensable à la division cellulaire (il est abondant dans les tissus méristématiques).

Le potassium assure la résistance des plantes à la verse. Sa carence retarde le développement des organes reproducteurs et le pouvoir germinatif des grains diminue.

2.3.4. Sodium (Na):

Le sodium échangeable n'est généralement pas indispensable aux plantes et c'est pourquoi il est utilisé dans les solutions nutritives comme ion d'accompagnement destiné à introduire l'anion dont on veut étudier les effets.

Cependant il est nécessaire, voire indispensable, aux plantes halophiles. Il est surtout indispensable aux algues marines.

L'ion sodium (Na') est à l'origine des mauvaises propriétés physiques des sols sodiques : quand le sol est saturé de sodium, les colloïdes sont peptisés ; ce qui entraîne leur lessivage, la destruction des agrégats structuraux et la détérioration d'autres propriétés telles la viscosité, la solidité, etc..

2.4. Capacité d'Echange Cationique (CEC):

La capacité d'échange totale exprime la quantité totale d'anions et de protons qu'un sol peut absorber et la capacité réelle d'échange qui est la somme des cations échangeables (P. Duchaufour, 1970). La valeur de la CEC caractérise le pouvoir absorbant des sols. Elle dépend de la composition mécanique et minéralogique du sol et de sa teneur en matière organique. Les terres pauvres en fraction colloïdale (sables et limons sableux) ont une faible CEC. Plus il y a, dans la terre, de particules colloïdales minérales et organiques, plus sa capacité d'échange est élevée. La CEC est donc variable avec la nature du sol (les sols argileux ont une CEC supérieure à celle des sols sableux).

La CEC du sol exerce beaucoup d'influences sur la transformation des engrais minéraux apportés au sol et détermine leur mobilité. Sur les terres dont la CEC est faible, l'apport d'engrais facilement solubles peut être cause de lessivage des substances nutritives et d'une augmentation excessive de la concentration de la solution. C'est pourquoi, il vaut mieux apporter à ces sols, les engrais azotés et potassiques en petites doses, peu avant les semis.

La CEC est un facteur de fertilité du sol : plus la CEC d'un sol est élevée, plus il fixe de cations, et plus il peut stocker de cations, plus il est fertile.

2.5. Carbone (C) et matière organique (m.o):

Le carbone entre dans la composition de beaucoup de corps. Les végétaux l'absorbent à partir du CO₂ de l'air (photosynthèse). Sa teneur indique la richesse en matière organique du sol:

matière organique du sol (en %) = C (en %) x 1,724

La matière organique influence beaucoup les propriétés du sol. Elle est en partie à l'origine de la CEC et de la réduction du fer ; elle améliore la structure et est une source d'énergie pour les microorganismes. Son taux dans le sol varie suivant les facteurs écologiques.

La matière organique dans les sols irrigués est rapidement oxydée. Lors de sa minéralisation, l'azote (N), le phosphore (P) et le soufre (S) prennent une forme minérale assimilable par des végétaux.

2.6. <u>Phosphore (P)</u>:

La teneur des différents sols en phosphore (P2O5) varie de 0,03 à 0,2% (P. Smirnov et al, 1977). La réserve totale de phosphore est plus importante dans les sols renfermant beaucoup de matière organique (humus) : en moyenne 1500 à 6000 kg/ha dans la couche arable (R. Heller, 1969). Il est alors sous forme organique.

Dans les roches mères, le phosphore se présente sous forme de fluorapatite (CasF(PO₄)₃) et d'hydroxylapatite (CasOH(PO₄)₃) : c'est la forme fixée du phosphore.

En dehors de l'apatite, les sols contiennent aussi d'autres composés minéraux du phosphore (ions PO4--- liés aux colloïdes des minéraux par Ca++, Al+++ et Fe+++):

- dans les sols à réaction acide le phosphore est représenté par AlPO4, FePO4 et Fe3(PO4)2

- dans les sols à réaction basique il se trouve sous forme de CaHPO4 et Ca3(PO4)2
- dans presque tous les types de sol, il y a de petites quantités de phosphore monosubstitué de Ca (Ca(H2PO4)2), de phosphore mono et bisubstitué de Na (NaH2PO4 et Na2HPO4) et d'ammonium (NH4H2PO4 et (NH4)2HPO4).

Le phosphore est un important élément de l'alimentation des plantes. Il intervient dans les échanges énergétiques et participe à différents processus du métabolisme et de la division cellulaire. Il contribue largement à la nutrition azotée (réduction des nitrates, formation d'acides aminés).

2.7. Zinc (Zn):

a. Etats:

Le zinc fait partie des oligo-éléments indispensables aux plantes pour leur croissance. Comme le cuivre et le manganèse, le zinc est assimilé par les plantes sous sa forme échangeable (Zn++); sa solubilité est maximale en milieu acide, à pH 4 (S. Yoshida, 1981), mais le lessivage sous cet état peut provoquer des carences. Les mécanismes d'absorption du zinc sont l'échange cationique passif (phénomène d'osmose) et surtout l'absorption métabolique (processus actif).

L'adsorption du zinc se fait surtout sur les sites d'échange des minéraux argileux et de la matière organique. La montmorillonite (principale argile minérale des sols "Moursi" selon le projet G.EAU, 1984), peut fixer le Zn au delà de sa capacité d'échange cationique, en particulier à pH >7; tout le Zn adsorbé ne peut être extrait par les sels neutres d'extraction; le Zn non extractible serait fixé dans les sites non occupés par les ions Al (A. Loué, 1987). A pH 4, la solubilité du Zn du sol et des minéraux comportant du Zn est maximale, tandis qu'elle devient beaucoup plus faible dans les conditions neutres ou alcalines.

b. <u>Rôle</u>:

Le Zinc a une action catalytique dans les réactions enzyme-substrat pour la biosynthèse de l'ARN (Acide RiboNucléique) et de substances de croissance telles que l'auxine (acide indole-ß-acétique, AIA). La glutamate déshydrogénase, une

enzyme universelle qui catalyse la réaction de synthèse de l'acide glutamique, est activée par le Zn selon la réaction exergonique suivante:

NADH + H + NH3
$$Zn^{++}$$
 H2O + NAD α -cétoglutarate L -glutamate

CHNH2

Au stade d'équilibre, la réaction tend vers la synthèse réductrice du glutamate : COOH (CH2)2

COOH acide glutamique

En riziculture, le zinc est un des oligo-éléments dont la carence est souvent signalée en riziculture irriguée. Cette carence se reconnaît par un nanisme des pieds, une défoliation, une chlorose avec des taches brunes sur le limbe; les symptomes sont proches d'une nécrose. En cas de carence, la teneur en zinc du végétal est inférieure à 15 ppm de la matière sèche (A. Atanasiu et al, 1984). La carence en zinc est liée:

- . aux réserves en zinc du sol, qui peuvent être faibles surtout dans les sols sableux acides lessivés
- . au pH, lorsque ce dernier dépasse 7, et surtout en sols calcaires : selon N. Atanasiu et al, 1984, la disponibilité du zinc est entravée par les composés organiques ou par les carbonates de Magnésium et de calcium qui le fixent à pH > 7
- . aux chélates et à la matière organique : de nombreuses études font état de corrélations positives entre matière organique et zinc assimilable ; de nombreux cas de carence ont été signalés après décapage des sols lors d'opérations de nivellement pour l'irrigation
- . aux cations Cu⁺⁺ et Fe⁺⁺, antagonistes de Zn⁺⁺
- . au mauvais drainage : l'engorgement du profil entraine une augmentation de la concentration en HCO3 dont une concentration de 15 à 30 mM peut entrainer une réductionde 70 % du zinc dans les pousses.
- . à la température : les déficiences sont accrues aux basses températures
- au phosphore : les fortes teneurs en phosphates ou des fertilisation phosphatées récentes peuvent entrainer une diminution de l'assimilabité du zinc
- . au mauvais enracinement lié à un sol trop compact ou trop souvent nivellé.

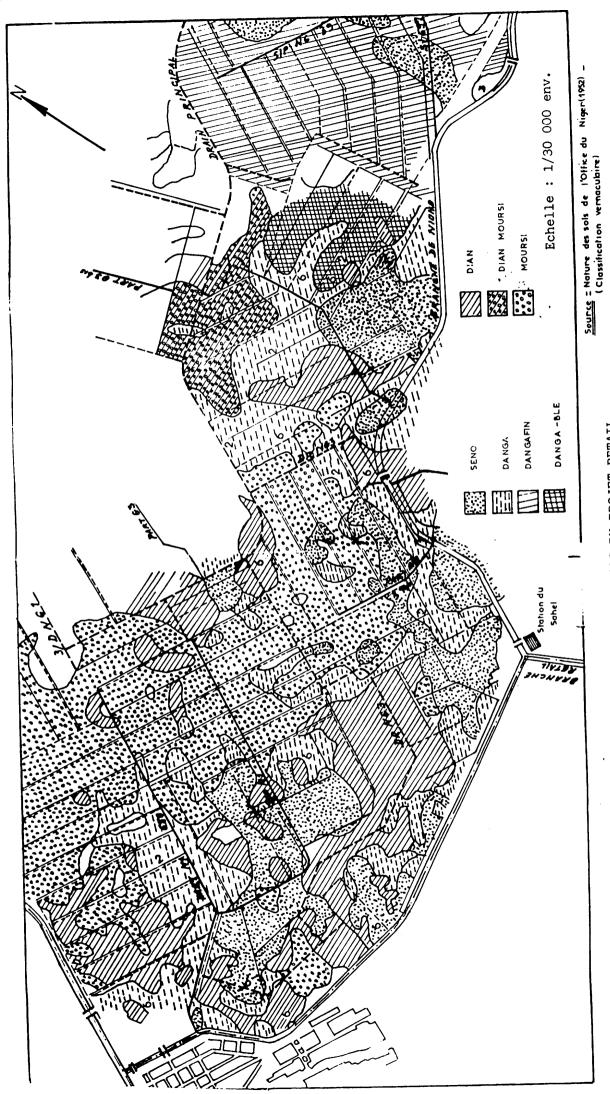
II. ETUDE PRATIQUE:

L'étude pratique comporte le travail sur le terrain et au laboratoire.

1. Travail sur le terrain:

L'étude pratique d'un sol englobe sur le terrain un certain nombre d'opérations, entre autres le choix du site, l'examen du profil et le prélèvement d'échantillons.

1.1. Choix du site - Observation des profils - Processus pédogénétiques :


1.1.1. Choix du site - Observation des profils :

Le site d'étude est la zone d'intervention du Projet Retail. Des excursions et des observations ont été faites, appuyées par la carte des sols (carte n°3, p. 33) et les plans d'aménagement de la zone. Les observations de profils ont été faites sur des tranchées réalisées par la SATOM lors du réaménagement du réseau d'irrigation. Il faut cependant signaler que ces observations peuvent aussi se faire sur des carrières ou sur une fosse pédologique spécialement aménagée.

Les sols observés et décrits correspondent aux sols décrits par Dabin (1951) (voir p. 17). Ce sont, toujours suivant l'appelation locale (Bambara): les "Seno", "Danga", "Dangablé", "Dangafing", "Dian", "Dian Moursi" et "Moursi" (cf carte n°3 p. 33). Leur description détaillée est donnée dans le tableau n°5 p. 34 et 35. L'échantillonnage a été fait sur la base de la carte des sols n° 3 p. 33, au prorata des surfaces occupées par les différents types de sol.

Remarques:

- Parfois au delà des 45 ou 50 premiers centimètres, la distinction entre les sols "Seno", "Danga", "Dangable" et "Dangafing" s'annonce très délicate (à partir des méthodes appliquées sur terrain) : même coloration, présence de concrétions ferrugineuses, formation d'anneau avec une terre modelée entre les mains ; par exemple le "Seno" du R 4 (zone maraîchère de Nango) ressemble beaucoup aux "Danga".
 - Les "Moursi" diffèrent des "Dian" et "Dian-Moursi" par leur coloration homogène sombre dans tout le profil et remarquablement par la présence de nodules calcaires et d'un micro-relief de type "gilgaï" (mamelons entre fentes de retrait).

CARTE Nº 3 : NATURE DES SOLS DU PROJET RETAIL

TABLEAU Nº 5 : DESCRIPTION DES PRINCIPAUX TYPES DE SOLS

ر بسر 10 مع مس	Profondeur de prélèvement cm	Couleur	E T	Structure	Autres éléments
organistic est of the	0-50	Beige- Ocre	Sableuse	Meuble	Nombreuses Racines
	09-07	Ocre	Sabl -Limoneuse	Meuble	Peu de racines
real real real	60-100	Ocre	Sabl -Limoneuse Limono-Sableuse	Meuble	in the color of the color of the control of the color of
	0-50	Beige	Sabl -Limoneuse Limo o-Sableuse	Massive	Nombreuses racines
	20-60	Beige-Ocre	ArgiSableuse	Polyédrique	Peu de racines, compact
1 1 1	60-100	. Orre fined	Nogil - Limoneuse	Cubique	ncrétions ferrugineuses rouges lus ou moins durcies, compact
	0 0 + 0	Belse-Ocre	limeSableuse	Grumeleuse	racin ferrug
* * * * * * * * * * * * * * * * * * *	20-60	Oere-Foncé avec taches oeres	Argil Limoneuse	Polyédrique	Moins de racines, peu de gravillons
m - a - m - : +	60-100	Ocre Foncé.	Argil:-Limoneuse	Polyédrique	
1	05-0	Gris-Noir	lim v-Sobleuse	Lamellaire	Nombreuses racines
* * **	09-08	Beige aver taches ocres	Limor -Argileuse	Polyédrique	Quelques racines, compact
Tarafan in an ar	60-100	Ocre avec taches ocres foncées	Argil -Limoneuse	Polyédrique	Gravillons, compact

TABLEAU Nº 5 (STITE) : DESCRIPTION DES PRINCIPAUX TYPES DE SOLS

общине полителеннями, не ченее со общиненнями настройным специальности инверпетителеннями, в десерен	Autres éléments	Fentes de retrait parfois Nombreuses Racines Quelques nodules calcaires	Racines rares	Arcines rares	act metre:	Racines Peu de racines Concrétions	The second contract of	Compact Compact Nobra nodules calcaires Ø 3-5 cm Nombreuses racines	Larges fentes de retrait Larges crevasses Nodules calçaires	peu de racines Crevassé
	Structure	Polyédrique	Polyédrique	Peu nette	Prismatique	Prismatique	Peu nette	Cubique	Cubique	Cubique
	Tature	Argilo-Limoneuse	Artheuse	Artheuse	Argilo-Limoneuse	Areleuse	Arileuse	Argileuse	Argileuse	Argileuse
	content	Brun	Brun	Brun	Brun	Brun avec quelques taches ocres	Ocre	Noir	Noir	Gris
Profondeur de	prélèvement cm	0-20	20-60	60-100	0-20	09-07	60-100	0-20	20-60	60-100
Sol		F 5 2 9	Dian	1	Salam days and a salampanas con	Dian-Mours;	en men men men e	The second secon	Moursi	THE COLUMN THAT IS THE STREET, THE COLUMN THAT IS THE COLUMN THE COL

- Les "Dangabké" ne perdent rien d'un "Danga" ou "Dangafing" érodé.
- Nos sols observés et décrits se repartissent en :
 - * sols ferrugineux plus ou moins lessivés ("Seno", "Dangablé" et "Dangafing").
 - * sols bruns subarides ("Danga" et "Dian")
 - * vertisols ("Moursi" et "Dian-Moursi").

1.1.2. Processus pédogénétiques :

Les processus pédogénétiques dépendent des facteurs écologiques. Vysotskiy (1905) cité par J.F. Vizier (1983) affirme qu'un processus pédogénétique est la résultante de l'interaction des facteurs écologiques.

Dans la zone réaménagée du Projet Retail, le processus caractéristique est l'hydromorphie, définie comme étant l'engorgement d'eau temporaire ou permanent du sol. L'observation d'horizons tachetés (taches rouges) et de concrétions est la preuve de cette hydromorphie. A ce propos, H. Ehrart (1973) soutient que l'une des caractéristiques de l'hydromorphie réside dans l'aspect bariolé de certaines parties du profil dû au fait que le fer, l'aluminium et le manganèse se présentent soit à l'état oxydé, soit à l'état réduit. C'est aussi le signe de la gleyfication.

A la faveur de l'humidité et de la matière organique, le Fe, l'Al, et le Mn issus de l'altération des minéraux primaires s'oxydent et leurs protoxydes se déposent (et peuvent être drainés); la silice (SiO₂) et les cations basiques sont éliminés par drainage. Le mouvement de ces protoxydes influence la gleyfication. Le fer par exemple, est réduit en ion Fe⁺⁺ en période d'anaérobiose (engorgement d'eau); l'ion Fe⁺⁺ (ion ferreux) est à l'origine des taches grisverdâtres des sols hydromorphes à gley ou à pseudogley; en période de sécheresse (rizière complètement drainée), à cause de l'évaporation, la nappe d'eau s'abaisse, et avec l'aération au niveau du sol il se produit une oxydation de Fe⁺⁺ en Fe⁺⁺⁺ (ion ferrique); l'oxyde ferrique formé précipite et cristallise; si la cristallisation est suivie de déshydratation, on obtient les concrétions rouges observées au niveau du profil.

Sur nos terres, on a observé des efflorescences salines, des nodules calcaires et des pisolithes ferrugineux. Bétrémieux (1949) de son côté a noté la présence de nodules calcaires dans les sols du bassin du Logone au Tchad et les a attribués aux phénomènes de remontée de solutions riches en calcaire.

Nous pensons que dans le cas de notre zone d'étude, les phénomènes de remontée sont mis en cause. En effet, les solutions de sels de Ca et de Fe peuvent remonter en surface par capillarité lorsque le sol est soumis à une forte évaporation après une période d'inondation. Il y a ensuite précipitation des sels ; d'où formation des concrétions calcaires et ferrugineuses. La matière organique en migrant en surface, et en présence de sels, donne les salants noirs.

Dans les rizières asséchées, le phénomène d'induration est en général faible et n'affecte que la surface. Le plus souvent, les matériaux clastiques (roches formées des débris d'autres roches) sont seulement consolidés, compactés, plus ou moins cimentés par la masse terreuse argilo-ferrugineuse. Si l'induration est plus forte c'est parce que les matériaux détritiques et leur ciment sont initialement plus riches en Fe. Cette induration n'a pas été entièrement élucidée à l'O.N., mais on pense qu'elle fait appel à la déshydratation et à la cristallisation des oxy-hydroxydes de Fe, à la dissolution locale, puis à la reprécipitation de ces derniers par les variations d'oxydo-réduction et à la déshydratation des argiles. Ainsi à la faveur des alternances d'humectation et de dessication, et de réduction et d'oxydation, un certain nombre de mécanismes assurent la cohésion des matériaux meubles et leur confèrent une certaine ténacité : c'est ce que nous appelons induration. Cette dernière est un phénomène très différent de l'organisation minérale des cuirasses et peut s'observer sur les matériaux exposés à l'air libre et aux intempéries : talus des routes, tranchées de chemin de fer, bordure des puits, briques des bancotières.

1.2. Prélèvement d'échantillons:

Nous avons prélevés 450 échantillons à l'aide de la tarière en 150 points de prélèvement repartis comme suit (détails dans le tableau n°6 p. 38 à 43 et les cartes n° 4, 5, 6, 7 et 8 pages 44 à 48):

"Moursi" : 150 échantillons en 50 points
"Danga" : 90 échantillons en 30 points
"Dian" : 75 échantillons en 25 points
"Séno" : 75 échantillons en 25 points
"Dangafing" : 30 échantillons en 10 points
"Dangablé" : 15 échantillons en 5 points
"Dian-Moursi" : 15 échantillons en 5 points

Le nombre élevé des points de prélèvement dans les "Moursi" est dû au fait que ce sol occupe la plus grande partie du Projet Retail.

Tableau n° 6 : Récapitulatif des prélèvements

Type de Sol	n° point de prélèvement	Parti- teur	Sous- Parti-	Arro- seur	Rigole	n° B	assin
			teur			droite	gauche
MOURSI	101	N1		N1-8g	1	5	
(M)	102	**			2		10
	103	**		••	3		1
:	104	11	·	**	4		9
	105	**		••	5	1	2
	106	11		••	6		7
i	107 ,	11		**	9		10
	108	. 11		11	8	6	
	109	11		11	12	10	
	110	11		11	11	3	
	111	*1		N1-6d	1		A
	112	••		"	1		C
	113	••		11	1	В	
	114	••		••	2		С
	115	**	,	••	2		A
	116	,,		**	2	В	••
	117	11		11	3	C	
	118	,,		11	3	Ü	Α
	119	**		11	4	A	**
	120	,,		**	4	•	С
	121	,,		N1-9d	1		A
	122	,,		"	1		c
1	123	n		**	2	С	
	124	11		11	3		Α
	125	**		11	2		В
	126	••		••	3	В	Ð
	127	••		••	4	C C	
	128	**		**		C	Α
	129	**	1	••	4		A D
	130	**	4	••	5		В
					6		В

Tableau n° 6 : Récapitulatif des prélèvements (Suite)

Type de Sol	n° point de prélèvement	Parti- teur	Sous- Parti-	Arro- seur	Rigole	n° Ba	assin
501	presevement	ccur	teur			droite	gauch
MOURSI	131	N1		N1-6d	7		A
(M)	132	**		**	7	C	
(suite)	133	11		11	6	В	
	134	11		••	6	1	A
	135	11		**	6	1	C
	136	11	N1-2D	2D-9d	6	В	
	137	11	••	**	5	A	
	138	: !	**	F F	5		C
	139	11	**	**	4	В	
	140	11	**	**	3		С
	141	N3		N3-5d	3		C
	142	11		**	2		A
	143	11		**	1	c	
	144	11	1 1 ↓	N3-4d	9	В	
	145	. 11	† 	11	11	1	В
	146	**		N3-1g1	3		С
	147	; • • • • • • • • • • • • • • • • • • •]} + 	11	4		A
	148	***	1 1	••	5		С
	149	11		••	6		A
	150	**	1	00	7	С	
DIAN-	601	N4	Come anumas sumannemonsums	N4-5g	4		В
MOURSI	602	! !	4	••	6	1	A
(DiM)	603	11	4 1 1 1 1 1	**	5	4	С
	604	"		**	7	4	В
	605	11		••	9	В	: 1

Tableau n° 6 : Récapitulatif des prélèvements (Suite)

Type de Sol	n° point de prélèvement	Parti- teur	Sous- Parti- teur	Arro- seur	Rigole	A Paramentrarisminisminisminisminismi Paramentrarisminisminisminisminisminisminisminismi	assin gauche
DIAN	501	N1	***************************************	N1-3g	9 g	PRINCESSOR MINISTER	8
(Di)	502	11 N.T		" NI-28	9g	2	0
(D1)	503	**		**	10g	1	
	504	11		,,	1	1	1.0
		**		11	10g		10
	505				11g		5
	506	N3		N3-1d	11	Α	
	507	11		**	12	Α	
	508	N4		N4-3g	2		С
	509	11		P1	4		С
	510	**		11	3		A
	511	*1		11	5		A
•	512	**		Rlg	19	В	
	513	**		R1g	20	A	ı,
	514	••		R1g3	4		В
	515	••	:	R2g2	5	В	
	516	11		R2g2	6	A	
	517	71		R2g2bis			
	518	**		R3g3	10	A	
	519	11	i	"	9	В	1
	520	,,	:	11	9		C
	521	,,		R3g	8	С	
	521 522	,,		1108	8		
	523	,,		,,	7		A
	į	,,	4	,,	1	_	В
	524		i	,,	6	A	
	525			11	7	С	

Tableau n° 6 : Récapitulatif des prélèvements (Suite)

Type de Sol	n° point de prélèvement	Parti- teur	Sous- Parti-	Arro-	Rigole	n° B	assin
T INTERNATIONAL PROPERTY OF THE STATE OF THE			teur			droite	gauche
DANGA	401	N1		N1-4g	1		10
(D)	402	*1			1		1
	403	**		••	2		5
	404	***	1	**	3		9
	405	**		11	3		2
	406	••		N1-5g	1		5
	407	**		N1-3g	1d		5
	408	11		N1-5g	2g		5
	409	"		N1-3g	1g		1
	410	"		-	2		5
	411	11		N1-3d	1	A	
	412	***		11	1	1	С
	413	••		11	3		Α
	414	**		**	3	С	
	415	**		"	2	В	
	416	**	N1-2D	1 g	1	A	
	417	11	11	"	2	С	
	418	N3	1	N3-1g	30	A	
	419	**		"	30	•	В
	420	11		tt	29	С	Z
	421	N4		N4-4g	7d		Α
	422	"		11	7d	С	1.
	423	"		••	5d		С
	424	**	# # #	••	6d	#172 #8114g	A
	425	••		11	4d	5	В
	426	••	4. # ##	••	3d	# !	A
	427	**		••	3d	С	
	428	**	# 44 # 5	**	1d		А
	429	••	# #	**	2d		В
	430	**		99	2 d 4 d	С	Đ

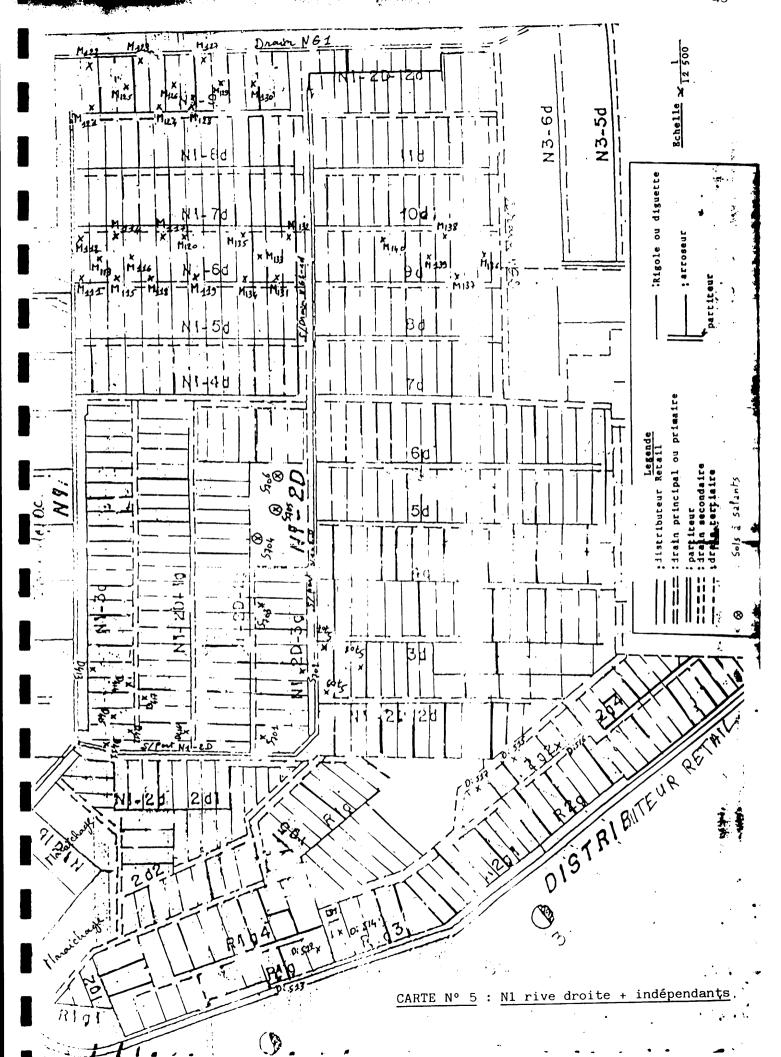
Tableau n° 6 : Récapitulatif des prélèvements (Suite)

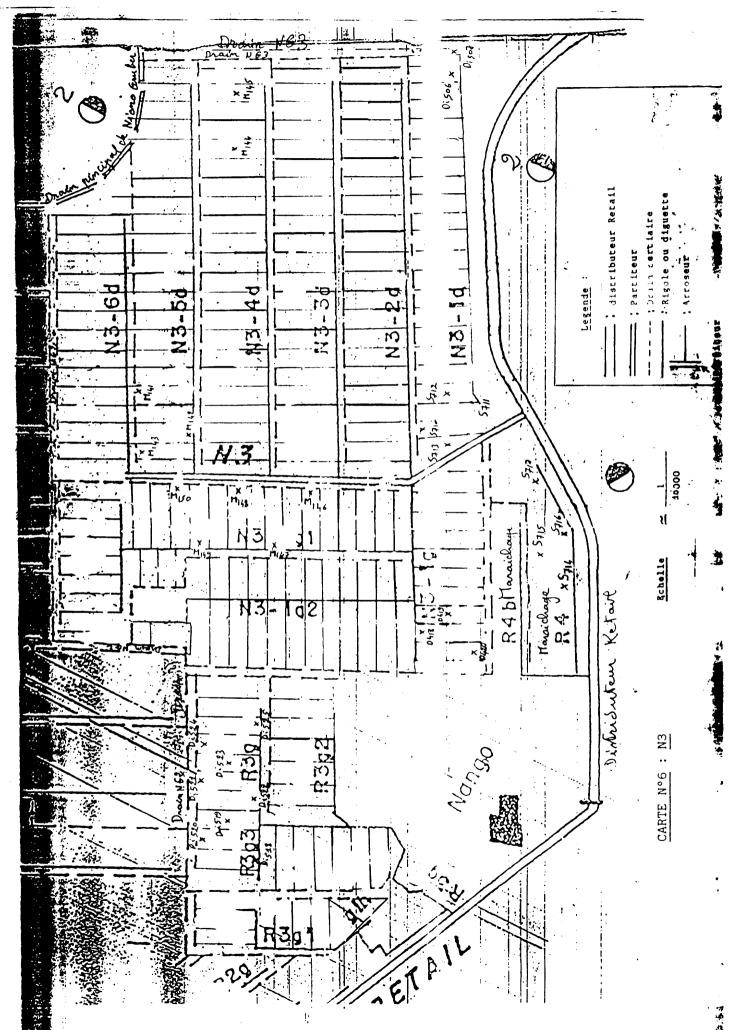
Type de	n° point de		Sous-	Arro-	Rigole	n° Ba	assin
Sol	prélèvement	teur	Parti- teur	seur		droite	gauche
DANGA	201	N4	nii in	N4-6d	3		С
BLE	202	**		"	4		В
(DB)	203	**		••	5	С	
	204	**		**	6	A	:
	205	**		11	7	C	
DANGA	301	N6	N6-3G	5g	3		С
FING	302	**	11	**	2		A
(DF)	303	••	11	6g	1 d	1	В
	304	••	"	6g	1d	С	
	305	**	11	*1	1 g	1	Α
	306	**	11	11	1g	С	
	307	**	**	3g	2		Α
	308	# ## 1	**	: *** i	2	, c	
	309	* **		• ••	3	, C	
	310	**	**	**	3		Α

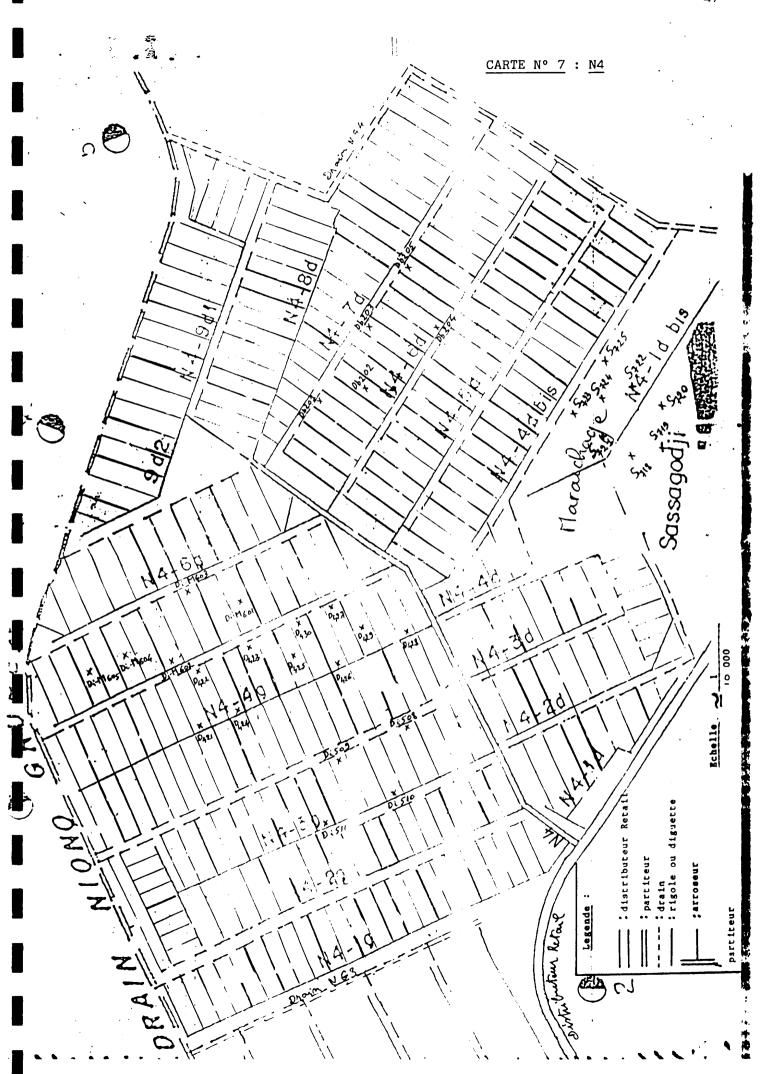
Tableau n° 6 : Récapitulatif des prélèvements (Suite)

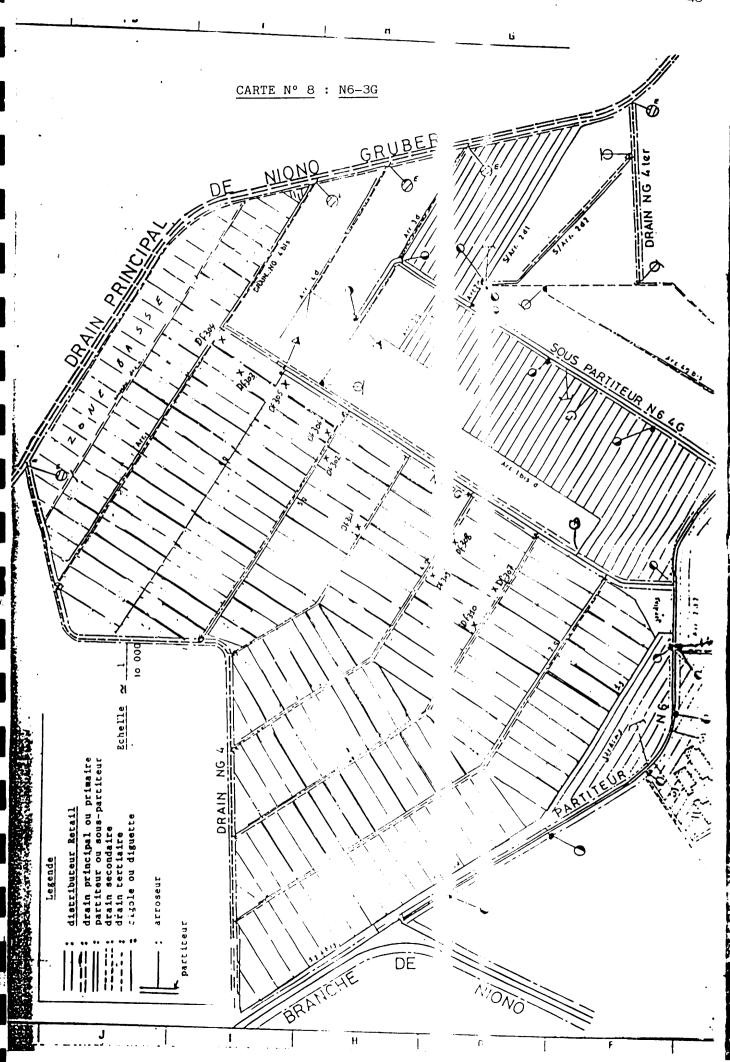
	Type de Sol	n° point de prélèvement	Parti- teur	Sous- Parti-	Arro- seur	Rigole	n Ba	assin
	301	presevement	CEUI	teur	SCUI	3 M CÁNGAS FERRIS SAD SE 2000 SE NO 51 : 1 LUDA LADO SALTO LOM SETTA	droite	gauche
	SENO	701	N1	N1-2D	3g	1		С
	(S)	702	"	11	"	3	Α	
		703	11	"	11	5		c
		704 s	11	••	ZNR			
		705 s	11	11	11			
		706 s	**	11	"			
		707	11	11	3d	1	Α	
		708	11	11	"	2	В	
		709	11	11	"	3	С	
		710	N3		N3-1d	1	С	
		711	11		11	2		A
		712	11		**	2	В	
İ		713	11		**	1		Α
1		714	11		ZM		: :	
		715	11		**			
		716	\$ \$		**			
401		717	11		**	:		
1		718	N4		ZM			
		719	••		••			
		720	••		••			
		721	**		••	,	4	
1		722	**		**		1 1 1	
		723	11		**	:		
		724	11		**			
		725	**		11		.ā ₁} : -∤	
1	минискионника ни ка рмин икананан		цынгат;;;;;ыматынштагыны та магыны	nadagang punggan padagang penggang penggang penggang penggang penggang penggang penggang penggang penggang pen	54;58.00;13790011698333436451834290312541:379381	привадничани сайлини. прирочание с	ingumme aumonomico andimi	

s : Sols présentant des salants noirs en surface


ZNR: Zone Non Réaménagée


ZM : Zone Maraîchére


PERSONALATIONAL


pirtlrear

A SA THE SECOND STREET STREET

2. Travail au laboratoire:

1.1. Préparation des échantillons :

Les échantillons ont été séchés au laboratoire de la D.R.D. (Division Recherche-Développement), puis broyés et tamisés à celui de l'Ecole Normale Supérieure (ENSUP), au tamis à maille de 2 mm. La terre fine obtenue est portée au laboratoire des sols de Sotuba pour analyse.

Puisqu'explorés par les racines des pieds de riz, les 20 premiers centimètres de sols ont été l'objet de toutes les analyses, tandis que seuls que la granulométrie, le pH et la conductibilité électrique (CE) ont intéressé les prélèvements réalisés entre 20-60 cm et 60-100 cm.

2.2. Résultats pratiques et interprétation :

2.2.1. Résultats:

Les résultats obtenus suivant les méthodes d'analyse appliquées au laboratoire des sols de Sotuba, sont représentés en moyenne dans les tableaux n°7 et 8 p. 50 et 51; le détail des résultats est donné en annexe, p. 68.

2.2.2. <u>Interprétation</u>:

Pour apprécier ces résultats, nous les comparons à d'autres résultats qui sont des valeurs standard.

a. Granulométrie: (méthode de sédimentation simplifiée)

Les résultats de l'analyse granulométrique des horizons supérieurs (0-20 cm) font distinguer deux groupes de sol :

- les uns avec un pourcentage d'argile faible (généralement moins de 25% d'argile) et un pourcentage très élevé de sable (>50%); ce sont les "Seno" et les "Danga";
- les autres ont un pourcentage d'argile élevé (>50% pour les Moursi), ou variant entre 40 et 50% ("Dangafing", "Dian"); leur taux de sable est très variable.

Au delà de 20 cm, lorsqu'on avance en profondeur (20-100 cm), la teneur en argile augmente pour les différents types de sol (voir annexes). B. Dabin (1951)

TABLEAU Nº 7:

MOYENNES ET VARIATIONS PAR TYPE DE SOL

(valeurs aberrantes non incluses)

Type de Se				Arg.	pH-Bau	pH-KC1	C.E.			E20 ∎g/100g		P.ass			[neq/100	Ca g		satur.	BSP
Nours																			
noyenne	•	31	17	52	7,77					0,21		2,5			0,36	-			5
variation (%)	(homogène)	16	22	14	5	4	42	87	31	27	14	54	18	52	3 0	22	48	9	74
Danga	a Blé																		
noyenne	Argile	45	16	39	6.06				0,67	0,14	103	2,6	12,3	0,14	0,22	5,59	2,77	70	1
variation (%)	(homogène)	24	17	23	2	7	0	224	52	4	13	45	24	34	21	29	32	15	91
Danga	Ping																		
noyenne	Argile	38	20	43	5,85	4,14	0,12	0,00	0,50	0,21	100	1,2	14,8	0,52	0,38	7,67	4,02	84	3
variation (%)	(très variable	23	36	29	7	9	179		18	43	34	59	15	79	25	22	29	11	99
Danga	ı																		
noyenne	Limon Sableux	61	21	19	6,12	4,99	0,05	0,00	0,29	0,15	79	2,7	6,6	0,22	0,15	2,60	1,14	63	3
variation (%)	(assez homogèn	e 20	35	47	7	12	93		49	53	29	73	41	93	56	53	57	36	109
Dian																			
noyenne	Limon Argileux	40	17	43	6,50	5,31	0,11	0,01	0,35	0,17	113	2,6	15,3	0,55	0,42	7,18	3,24	74	3
variation (%)	(très variable) 29	19	28	14	17	77	282	38	30	20	45	24	55	196	33	27	19	64
Dian	Noursi																		
moyenne	Argile	44	17	39	6,64	5,65	0,10	0,00	0,38	0,16	94	1,2	14,2	0.53	0,30	7,92	3.75	88	3
variation (%)	(assez homogèn	e 12	7	11	4		62	·	31	30	8	20	31	30	28	29	16	10	26
Seno																			
soyenne	Limon Sableux	74	16	10	5,98	4,97	0,13	0,00	0,32	0,19	67	3,6	4,0	0,33	0,15	2,00	0,62	70	8
variation (%)	(asser homogèn	e 8	29	39	18	23			35		27	54	49	80	82	74	84	37	83

<u>ensemble</u>

moyenne	47	18	35	6,71	5,47	0,15	0,04	0,42	0,19	102	2,6	13,8	0,62	0,29	8,18	2,97	79	4
variation (%)	39	29	52	15	18	124	193	45	73	30	61	57	87	124	74	75	26	97

PREMIERS RESULTATS DES ANALYSES DE SOL BPPECTUERS SUR LES RCHANTILLONS PRELEVES EN HIVERNAGE 1987 SUR LE PROJET RETAIL 3 HORIZONS : 0-20, 20-60, 60-100 cm

Texture, pH, conductivité

Projet Retail R-D et IER Labo de Sotuba, mai 1988

MOYENNES ET VARIATIONS PAR TYPE DE SOL

note à ce sujet : "Il est indubitable que dans certaines terres particulièrement battantes, il s'est produit une migration lente des éléments colloïdaux en suspension de la surface vers la profondeur ; la teneur en argile augmente toujours dans ce sens, et jamais en sens inverse dans la limite des 50 ou 75 premiers centimètres." Ainsi les terres étudiées sont en cours de lessivage.

Ce fait peut occasionner un mauvais drainage interne, surtout dans les "Moursi", les "Dian" et les "Dangablé" qui offrent une teneur moyenne en argile supérieure à 50%. La présence d'un système de drainage parallèlement au réseau d'irrigation permet l'évacuation de l'eau stagnant dans les rizières, évitant ainsi un mauvais drainage superficiel des sols à texture fine.

Le taux de limon dépasse rarement 20% dans les trois profondeurs (0-20; 20-60, et 60-100 cm) quelque soit le type de sol; les sols du Retail sont pauvres en cette fraction.

De cette étude granulométrique, ressort la grande diversité de la texture de nos sols. On remarque d'importantes variations entre les divers types, mais aussi au sein d'un même type, excepté le "Moursi".

La texture étant déterminante dans les propriétés d'un sol, il peut découler de la considérable variation de cette composition granulométrique une variation de certaines des propriétés des sols de notre zone d'étude telles que le pH, la porosité, la structure, l'humidité au point de flétrissement. A cet effet, une attention particulière doit être accordée, de la part de l'agronome, à cette variabilité lors des expérimentations au champ.

b. propriétés chimiques :

- pH : (Eau)

<u>Tableau n°9</u>: Proposition du <u>Laboratoire</u> des sols de Sotuba pour une classification adaptée aux terres de l'O.N.

рН	Sol
< 6,5	neutre ou acide
6,5-8,1	en cours d'alcalinisation
8,1-9,0	alcalin ; en cours de salinisation
> 9,0	tres alcalin ; probablement salé

La comparaison de nos résultats à ceux du tableau n°9 ci-dessus, révèle qu'exceptés les "Moursi" et les "Dian-Moursi", plus de 70% des autres types de sol (pour les trois profondeurs de prélèvement) sont neutres ou acides. 80% des "Moursi" sont en voie d'alcalinsation et 20% sont alcalins en cours de salinisation dans les 20 premiers centimètres. Pour les profondeurs:

- 20-60 cm : 54% des "Moursi" sont en cours d'alcalinisation, 44% sont alcalins en voie de salinisation et 2% sont très alcalins-probablement salés;
- 60-100 cm: 40% des "Moursi" sont en cours d'alcalinisation, 58% sont alcalins en voie de salinisation et 2% sont acides.

Remarquons que les "Moursi" sont rarement acides ou bien neutres et que les autres, comme les "Dian-Moursi" sont rarement alcalins. Il convient de signaler que 4% des "Seno" sont très alcalins probablement salés (dans toutes les profondeurs).

De tous ces sols, les "Moursi" présentent le pH moyen le plus élevé (7,7), tandis que pour le reste des sols il varie autour de pH 6 (voir tableau n° 7 des résultats moyens p. 50). Ces résultats confirment B. Dabin (1954) et Toujan (1981) qui on trouvé respectivement sur les "Moursi" pH 7,2 (à Molodo) et pH 7,6 (au Méma) et un pH oscillant entre 5 et 6 pour les autres types de sol.

Ces pH, associés aux effets de l'eau d'irrigation, favorisent la neoformation d'argine :

- par hydrolyse totale, on a libération complète des éléments Si, Al, Fe, Ca, Mg, K, Na des minéraux ;
- la silice (SiO₂), les cations Ca⁺⁺, Mg⁺⁺, K⁺, Na⁺ sont éliminés,
- les oxydes de Fe et Al peu mobiles s'accumulent sur place,
- lorsque l'élimination de SiO2 est ralentie par défaut de drainage et le pH augmentant (vers pH 5, car en milieu acide pH < 5, la solubilité de l'Al est supérieure à celle de SiO2) la solubilité de l'Al diminue : il y a alors absorption de SiO2 par Al2O3 (alumine), donc néoformation d'argile.

Le riz préférant un pH appartenant à la gamme 5,5 à 6,5 (optimum : pH 6) selon J. Boyer (1982), les sols de notre zone d'étude, sauf les "Moursi", lui sont favorables. Ainsi on doit être attentif au pH des sols "Moursi" chez lesquels il peut atteindre une valeur supérieure à pH 8 et "Seno" où il est assez variable.

- Conductibilité électrique (CE) : (extrait 1/2,5 à 25 °C)

Par rapport aux autres types de sol, la salinité des "Moursi" est plus importante ; néanmoins avec une CE moyenne de 0,26 mmhos/cm, ils ne sont pas salés, mais présentent un risque d'alcalinisation comme leurs pH le montrent. Pour juger de la salinité des sols, nous avons utilisé l'échelle suivante :

Tableau n°10: Proposition du Laboratoire des sols de Sotuba pour une classification adaptée aux terres de l'O.N.

CE (mmhos)	sol
< 0,1	non salé
0,1-0,4	en debut de salinisation, risque d'alcalinisation
0,4-1,0	peu salé avec risque de forte alcalinisation
1,0-2,0	salé, probablement alcalin

Au vu du tableau n°10, le tableau n°11 donne les pourcentages en Moursi selon la CE:

Tableau n°11 : pourcentage de "Moursi" selon la CE

	nj. mare na mareka na sama na mana na materaka i		•	Saran Sangganeri ennun un unun aures ag
profond. (cm)	< 0,1	0,1-0,4	0,4-1,0	4
0 - 20	4%	92%	4%	0%
20 - 60	4%	90%	6%	0%
60 -100	10%	82%	8%	0% s
	profond. (cm) 0 - 20 20 - 60	profond. (cm) < 0,1 0 - 20 4%	CE (mm profond. (cm) < 0,1 0,1-0,4 0 - 20 4% 92% 20 - 60 4% 90%	CE (mmhos) profond. (cm) < 0,1 0,1-0,4 0,4-1,0 0 - 20 4% 92% 4% 20 - 60 4% 90% 6%

Exception faite des "Dian-Moursi", semblables aux "Moursi" du point de vue CE, plus de 50% des sols sont non salés : 100%; 83,5%, et 64% respectivement pour "Dangablé", "Danga" et "Dian" (0-20 cm). 4% des "Seno" sont salés.

- Matière organique (m.o.) : (méthode Anne modifiée)

Dans le rapport du ministère français de la coopération (1970), une relation est établie entre le taux de m.o. et la fertilité du sol (tableau n°12):

Tableau n°12 : Relation entre C en % et la fertilité

# 	C%		0,75	0 , $75-1$, 0	1,0-1,25	> 1,25
i i	fertilité		Faible	Faible	Moyenne	Bonne

Au regard de nos résultats et de ce tableau, tous les sols étudiés sont pauvres en m.o. comme l'ont constaté avant nous B.Dabin (1951), Toujan (1981) et le Projet G.EAU (1984). Dans les horizons supérieurs (0-25cm), ils ont respectivement trouvé, pour les différents types de sol, des valeurs moyennes variant entre : 0,13% et 1,15%; 0,1% et 1,0%; 0,3% et 1,%; pour notre étude, les chiffres varient entre 0,29% et 0,67% (voir moyennes dans le tableau n°7).

Dans les quatre études, la teneur la plus élevée se remarque chez les sols à texture argileuse ("Moursi", "Dangafing", "Dangablé", "Dian-Moursi"). Cette pauvreté en m.o. serait due à la température trop élevée et à la présence d'humidité dans les rizières, qui accelèrent le processus de minéralisation de la m.o. (réactions chimiques et biochimiques) et aussi à la nature de la protéine.

Il ressort de nos études que le taux en carbone des "Moursi" est assez lié au pH (coefficient de corrélation (r) = -0,71); l'augmentation du pH se traduit par une diminution de la teneur en m.o. (voir figure n°3, p. 56).

- Phosphore total (P total): (méthode Bray, extrait H2SO4 et HNO3)

Pour la disponibilité en phosphore total, nous utilisons les données de l'IMPHOS-P. Roche (1980) groupées dans le tableau n°13 suivant, selon lequel les sols du Retail sont pauvres en cet élément avec la moyenne maximale chez les "Moursi" (127 ppm).

Tableau n°13: Relation P total et fertilité

Ptotal (ppm)	< 200	200-450	450-650	650-1300	> 1300
appréciation	très pauvre		moyen		tres riche

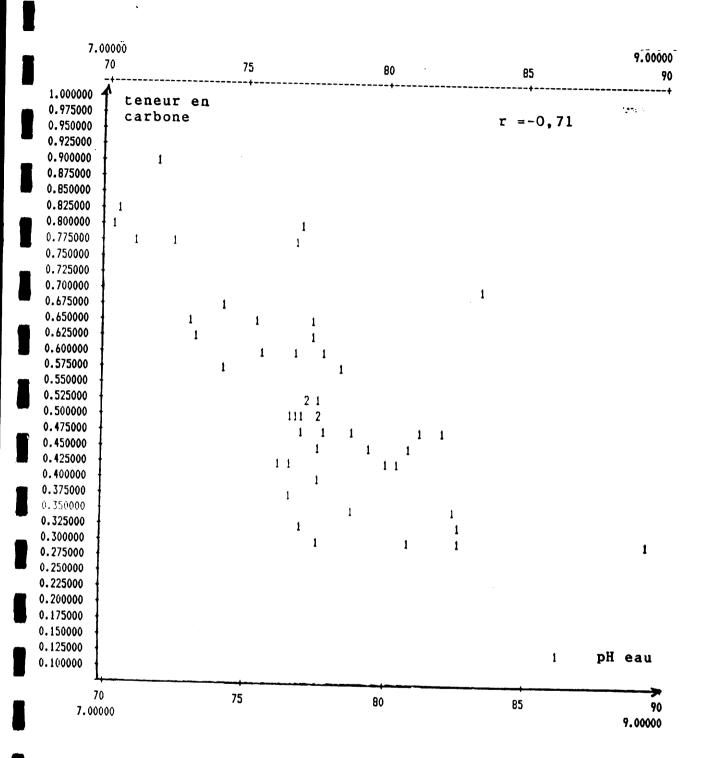


FIGURE Nº 3 : RELATION ENTRE MATIERE ORGANIQUE ET PH

- Phosphore assimilable : (méthode Bray, extrait HCl et NH4F)

Les normes de fertilité estimées par P. Roche et Al (1980) sont les suivantes :

ppm de P < 6 : très carencé

ppm de P 6-17 : moyennement carencé

ppm de P 17-27 : entretien de fertilité nécessaire

ppm de P > 27 : non carencé

Sur cette base, la plupart de nos échantillons sont très carencés en phosphore assimilable : plus de 84% des différents types de sol présentent des valeurs inférieures à 6 ppm de P, sauf quelques "Seno" chez lesquels des valeurs aberrantes (252 ppm de P) se rencontrent. Ces cas aberrants seraient dus au prélèvement d'échantillons après l'épandage d'engrais phosphatés ; ces valeurs n'ont pas été prises en compte dans les moyennes. Les sols "Dangafing" et "Dian" offrent la teneur moyenne minimale (1,2 ppm de P).

- La capacité d'échange cationique (CEC) : (extrait à l'acétate d'ammonium)

Référence faite au tableau n°14 établi à partir des données du Ministère Français de la Coopération (1980), seuls les "Moursi" ont une valeur moyenne élevée (22,1 meq/100g); elle est très faible chez les "Seno" (4,0 meq/100), faible pour les "Danga" (6,6) et moyenne pour les autres.

Tableau n°14: appréciation de la CEC

CEC meq/100g	**************************************	6	6-12	12-20	20-30	> 30
appréciation	très f	aible	faible	moyenne		très élevée

La CEC varie sensiblement avec la teneur en argile des sols (voir fig 4 p. 58, le cas des "Moursi").

Avec une CEC moyenne de 22,1 meq/100g, les "Moursi" ont un pouvoir tampon fort contre l'acidification alors que les "Seno" (4,0 meq/100g) et les "Danga" (6,6 meq/100g) opposent un faible pouvoir tampon aussi bien contre l'acidification que contre l'alcalinisation. On évitera donc d'apporter à ces deux derniers types de sol de grandes quantités d'engrais physiologiquement acides ou alcalins.

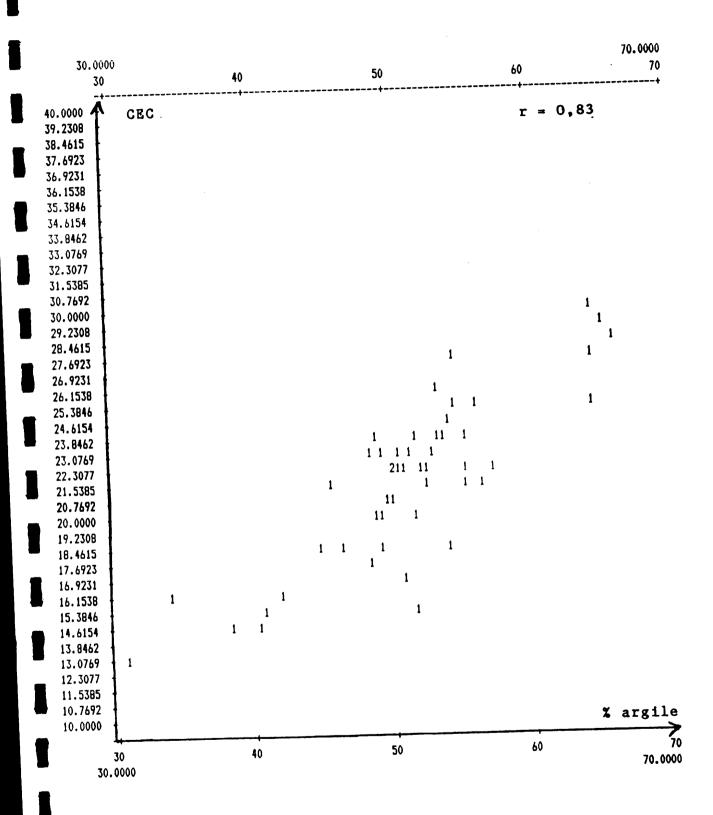


FIGURE Nº 4 : RELATION ENTRE CEC ET TAUX D'ARGILE

- <u>Calcium et Magnesium (Ca et Mg) échangeables</u> : (NH₄C₂H₃O₂ et absorption atomique)

Concernant ces deux éléments les "Moursi" ont la moyenne la plus élevée (15,39 meq/100g de Ca et 4,80 meq/100g de Mg) suivis des "Dangafing" (respectivement 7,67 et 4,02 meq/100g) pendant que les minima s'observent au niveau des sols légers : "Séno" (2,00 et 0,62 meq/100g) et "Danga" (2,18 et 1,11 meq/100g). Plus de 80% des échantillons de chaque type de sol fournit un rapport Ca/Mg en deçà de 4,5 retenu comme bas selon R. Laumonnier (1978). Seules quelques valeurs élevées (supérieures on égales à Ca/Mg = 10 donné comme valeur normale élevée selon la même source) se remarquent dans les "Moursi" (6%) et les "Seno" (12%). Ce rapport Ca/Mg faible dans la majeure partie des cas implique une saturation du complexe absorbant par Mg face au Ca. Ca et Mg étant antagonistes, une éventuelle carence en Ca est à prévoir.

- Carbonate de calcium (CaCO3):

La situation est déplorable. Les valeurs trouvées sont très faibles quelque soit l'échantillon. 0,1% ("Moursi") est la moyenne maximale. Ces faibles teneurs peuvent avoir un impact sérieux sur le pH et la structure dont la dégradation serait amorcée chez les "Moursi", avec 20% des échantillons alcalins et en cours de salinisation.

L'apport de quantités raisonnables d'engrais organique et le chaulage pourront augmenter la teneur en calcium de la fraction colloïdale de ces sols.=

- Potassium échangeable : (extrait NH4C2H3O2 au spectrophotomètre à flamme)

Les faibles teneurs en potassium (0,15 meq/100g) se notent dans les limons sableux ("Seno" et "Danga" : 80% des échantillons) et les très élevées dans les "Dian" (0,42 meq/100g), au vu du tableau n°15 suivant tiré de P. Smirnov (1981) :

<u>Tableau n°15</u>: appréciation de la teneur en potassium échangeable

K échangeable (meq/100g)	< 0,20	0,20-0,30	0,30-0,40	> 0,40
Appréciation	faible	moyenne	élevée	très élevée

Il faut noter que des valeurs moyennes élevées ou très élevées sont enregistrées partout; la teneur en K échangeable s'avère souvent rassurante vis à vis d'une carence éventuelle, mais pas totalement, vu l'exportation massive de cet élément par le riz (teneurs normales en K: 0,5% dans le paddy et 1,5% dans la paille selon Dabin (1951) et d'après P. Smirnov, une récolte de riz sur 1 ha, avec 3500 kg de grain + 2400 kg de paille exporte 67 kg de K).

- Potassium assimilable (K_2O): (extrait 0,1 M HCl + (0,2 M H₂C₂O₄ x 2H₂O))

Gaudy (1965), citant Vageler, note que les teneurs en K20 (mg/100g de sol) :

de 0 à 4 sont très faibles

de 4 à 8 sont faibles

de 8 à 14 sont médiocres

de 14 à 20 sont satisfaisantes

de + de 20 sont très satisfaisantes

Les taux moyens en K2O les plus élevés enregistrés sur nos sols sont de 0,21 mg/100 ("Moursi", "Dangafing") donc très faibles. Tous nos sols sont donc pauvres en K assimilable.

- Sodium (Na) : (extrait NH4C2H3O2 au spectrophotomètre à flamme)

Suivant la quantité de sodium absorbé, les sols se divisent en faiblement sodiques renfermant 5 à 10% de Na de la capacité d'échange totale, sodiques : 10 à 20% de Na et fortement sodiques : plus de 20% de Na.

Partant 4 échantillons sur 25 et 2 échantillons sur 50, respectivement en sol "Seno" et "Moursi", sont sodiques, comme on le constate avec les valeurs de l'ESP données en annexe (% de Na échangeable; considéré comme élevé au dessus de 15 %). Bien que plus de 64% des échantillons soient non sodiques, il existe des risques de sodisation non négligeables.

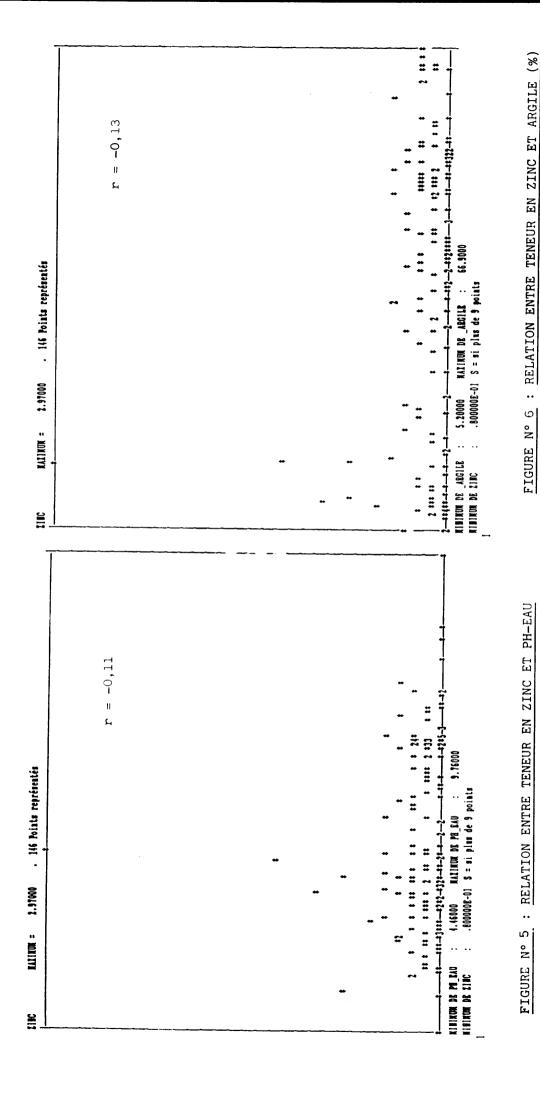
- Zinc (Zn) : (extrait DTPA)

Selon Lindsay et Norvell, 1969, cités par A. Loué, 1987, le zinc extrait à la DTPA se prête à l'interprétation suivante :

Zn < 0.5 ppm : bas

0.5 - 1.0 ppm: un peu faible

> 1,0 ppm : correct


Selon Smirnov, 1981, les mêmes auteurs retiennent un seuil critique de 0,8 ppm de zinc pour l'extrait à la DTPA.

Au regard de ces références, tous les sols analysés par nos soins sont pauvres, voire très pauvres, en zinc, la moyenne la plus élevée étant de 0,43 ppm pour les "Danga" (cf tableau n° 16 p. 61)

Tableau n° 16 : Valeurs moyennes des teneurs en zinc

Type de sol	Moursi	Danga ble	Danga fing	Danga		Dian Moursi	Seno
teneur moyenne en ppm	0,26	0,29	0,33	0,43	0,31	0,19	0,25

Exceptés quelques échantillons de Danga, la valeur critique de 0,8 ppm n'est jamais approchée quelque soit le type de sol. Les Moursi (1/3 des échantillons) sont les plus carencés (0,26 ppm en moyenne) avec les Dian-Moursi (0,19 ppm) et les Seno (0,25 ppm). Les figures n° 5 et 6 p. 62 traduisent cette pauvreté des sols. On y note également l'absence de corrélation entre la teneur en zinc et le pH, et entre la teneur en zinc et le taux d'argile.

CONCLUSION:

Comme nous l'avons mentionné dans notre introduction, il a été constaté dans les rizières de la zone du Projet Retail un mauvais développement du riz, ce qui a motivé notre tentative de recherche des causes possibles.

Les résultats des analyses de nos échantillons ont montré que les sols de cette zone sont pauvres en matière organique et en éléments P, K, Ca et Zn, avec une CEC généralement faible ou moyenne.

Une pauvreté en m.o. induit une déficience en azote (N), puisque la quasitotalité de l'azote du sol se trouve sous forme organique (99% selon P. Smirnov).

La déficience en K ralentit la synthèse des protéines dans le végétal, avec perturbation de tout le métabolisme de l'azote.

Les colloïdes du sol étant très généralement électronégatifs, les cations Ca** permettent aux anions NO3- et PO4-- de se fixer. Une pauvreté en ces cations favorisera une carence en NO3-, PO4--.

La correction d'une carence en phosphore ne peut se faire par un simple apport d'engrais phosphaté soluble, car si ce dernier a une action très favorable en début de végétation, il peut aussi avoir un effet néfaste en provoquant une faim d'azote, et dans certains cas une toxicité des composés nitreux. Certains éléments minéraux, en particulier le phosphore, accroîssent la vitesse de nitrification qui augmente aussi rapidement avec l'alcalinité.

Un sol à faible CEC ne garde pas les cations, qu'ils proviennent de la minéralisation ou de la fertilisation. En rizière, les nitrates non retenus par le complexe absorbant sont entraînés en profondeur où, en rencontrant un milieu réducteur, ils repassent à l'état de nitrites et s'accumulent en cas de mauvais drainage; un effet toxique est possible; pour Dabin (1954), c'est une cause du jaunissement des feuilles, du rabougrissement et parfois de la stérilité du riz.

La carence ou la faim d'azote provoque ces mêmes effets : pieds de riz chétifs, troubles de la photosynthèse, absence de synthèse des protéines, perturbation de la formation et de la croissance des organes de la fructification.

La carence en zinc présente des symptomes assez voisins de ceux caractérisant le manque d'azote, mais plus graves dans leur manifestation extrème comme la disparition des feuilles ou de poquets entiers. Cette carence s'exprime nettement sur les Moursi, ce qui n'est pas fortuit car ce sont les sols dont les pH sont les plus élevés, souvent supérieurs à 7, et dont le drainage interne est le plus mauvais, conditions favorables à l'expression d'une carence en zinc.

Sur les autres types de sol, présentant un pH plutôt acide et une CEC faible, les cations Zn⁺⁺ sont susceptibles d'être lessivés, ce qui peut également induire une carence en zinc.

A la lumière de nos investigations, les phénomènes de rabougrissement et de flétrissement des pieds de riz observés dans la zone du projet Retail pourraient être liés au pH, aux conditions réduites et à des carences en azote, phosphore et zinc ; l'azote et le phosphore étant assez systématiquement apportés par les paysans sous forme d'urée et de phosphate d'ammoniaque (environ 150 à 200 kg/ha d'urée et 100 kg/ha de phosphate d'ammoniaque en moyenne), nous retiendrons surtout la possibilité d'une carence en zinc. Mais seules des études plus fines (analyses de feuilles, suivis de parcelles, essais de fertilisation) permettront d'établir avec certitude la cause des troubles observés. Compte-tenu des différences de durée des conditions réduites entre les soles de simple-culture et de double-culture (les parcelles de simple-culture sont à sec de décembre-janvier à juin-juillet alors qu'en double-culture il n' y a qu'une mise à sec très brève en janvier-février), ces études devront distinguer ces deux zones.

En dehors de l'apport de zinc sous forme de sulfate ou autre (oxyde de zinc ou chélates de zinc), l'apport de gypse (CaSO4) ou d'acide sulfurique (H2SO4) pourrait être testé, ainsi que l'établissement d'un réseau de drainage interne ou de drains profonds permettant d'assurer le rabattement de la nappe et une meilleure réoxygénation des sols.

BIBLIOGRAPHIE

- LOUE A. (1987) : Les oligo-éléments en agriculture. Agri-Nathan, Paris.
- ATANASIU N., SAMY J. (1984) : Le riz, utilisation effective des engrais.
- BERTHELIN ET LEPRON J.C. (1979) : les cuirasses ferrugineuses des pays de l'Afrique de l'Ouest sèche. Institut de Géologie, Université Louis Pasteur, Strasbourg.
- BETREMIEUX (1949) : Travaux sur le bassin du Logone
- BOYER J. (1982) : Les sols ferrallitiques ; Facteurs de fertilité et utilisation des sols. Tome 1. ORSTOM, Paris.
- BRUMET-MORET Y., CHAPIRON P., LEMGAT J.P., MOLINIER M. (1986): Monographie hydrologique du Fleuve Niger. Tome II, cuvettes lacustres et Niger moyen. Editions ORSTOM, Paris.
- DABIN B. (1951) : Contribution à l'étude des sols du Delta Central Nigérien.
- DABIN B. (1954) : Essai en pots sur le riz des différents types de sol du Delta Central Nigérien.
- DABIN B. (1974) : Evolution des phosphates en sols acides des régions tropicales
- DUCHAUFOUR P. (1970) : Précis de pédologie. Masson et Cie éditions, Grasse.
- ERHART H. (1973): Itinéraires géochimiques et cycles géochimiques de l'aluminium Dion éditeurs S.A., Paris.
- GALLAIS J. (1967) : Delta intérieur du Niger, étude géographique régionale.

 Tome I. IFAN, Dakar.
- HELLER R. (1969) : Biologie végétale II : Nutrition et métabolisme.

 Masson et Cie éditeur.

HELLER R. (1978) : Abrégé de physiologie végétale, tome 2, Masson, Paris.

JAMIN J.Y. (1987) : Le Projet Retail. Office du Niger, Niono.

KAOURITCHEV (1983) : Manuel pratique de pédologie. Edition MIR, Moscou.

KEITA M. K., VAN DE POL F. (1984) : Méthodes d'analyse des sols, plantes, eaux. Laboratoire des sols de Sotuba, IER.

KONADJI Y. (1984): Colonat à 1'O.N.

LAMONNIER R. (1978): Encyclopédie agricole tome I. Editions J.B. Baillère, Paris

ROCHE P., GRIERE L., BABRE D., CALBA N., FALLAVIER P. (1980): Le phosphore dans les sols tropicaux. IMPHOS n° 2.

RUBON et SACKS M. (1985) : Géologie du Mali, cours moyen lère année.

SMIRNOV P., MOURAVINE E., STOROJENKOV V., RAPIKOV N. (1977) : Agrochimie. Editions MIR, Moscou.

TRUOG (1930): Determination of readily available phosphorus in soil.

URVOY Y. (1942) : Les bassins du Niger : Etude de géographie physique et de paléogéographie. Librairie Paris V.

VIEIZR J.F. et DURAND J.H. (1983) : Etude des phénomènes d'hydromorphie dans les sols des régions tropicales à saison contrastée. ORSTOM, Paris.

YOSHIDA S. (1981): Fundamentals of rice crop science; mineral nutrition of rice IRRI

ZUANG H. (1982): La fertilisation en cultures légumières. CTIFL, Paris.

Anonymes

Archives O.N. ségou (1973) : Note de service sur l'O.N.

IER (1972 et 1977) : Rapports annuels

IER (1986) : Synthèse des diagnostics régionaux

DNSPR (1985) : Rapport annuel (Direction Nationale de la statistique et de la Planification).

Ministère Français de la Coopération (1978) : Mémento de l'agronome

Projet Beau (1984) : rapport tome I

Mission Toujan (1980): Rapport

Film: "La colonisation". Réalisation Claude Massot, 1984

A N N E X E

DONNEES DE BASE DES ANALYSES DE SOL

PREMIERS RESULTATS DES ANALYSES DE SOL FAITES SUR LES ECHANTILLONS PRELEVES EN HIVERNAGE 1967 SUR LE PROJET RETAIL HORIZON DE SURFACE (0-20 cm)

Projet Retail R-D et IBE Laboratoire des sols de Sotuba, mai 1988

N.B. : Les chiffres soulignés ont été considérés comme aberrants, et non pris en compte dans les moyennes des pages 50 et 51

	Type de Sol nom vernac.		Sab.	Lin.	Arg.	pH-Bau	pH-KC1	C.E.	CaCO3	C X	K20 mg/100g	P.tot ppm	P.ass	CBC	Na 1	K eq/100g	Ca.	•	satur.	BSI
	Koursi	Argile	31	14	55	7,71	6,45	0,45	0,08	0,52	0,18	122	3,7	22,2			16,21		100	8
101 102	Koursi	Argile	31	12	57	7,73	6,64	0,78	0,28	0,55	0,20	132	4,8	22,8			16,99		100	10
103	Noursi	Argile	34	14	52	8,08	6,60	0,37	0,16	0,32	0,18	116	2,1			,	,	6,60	100	5
104	Moursi	Argile	31	13	56	8.05	6.59	0.10	0'10	0,44	0,17	127	1.8			0,18		6,99	100	6
105	Moursi	Argile	36	16	48	7,69	6,60	0,36	0.03	0.74	9.26	147	2,8		0,33		. ,	6.18	100	4
106	Noursi	Argile	33	13	54	7,66	6,50	û,31	0.36	0,52	0,20	131	3,7			0,34		7,44	91	4
107	Noursi	Argile	29	12	58	7,78	6,56	0,34	0,08	0,50	0,17	142	4,8			0,29	17,12	9,78	100	3
108	Moursi	Argile	33	17	50	7,71	6,44	0,31	0,05	0,49	0,20	134	3,2	23,0		0,29	16,58	6,21	100	
109	Noursi	Argile	27	18	55	7,88	6,73	0,36	0,31	0,36	0,22	132	3,7		1,01		16,31	9,27	100	4
110	Noursi	Argile	29	17	54	7,88	6,62	0,34	0,10	0,49	0,21	129	3.0			0,34	16,31	8,01	100	;
111	Moursi	Argile	27	19	54	7,74	6,44	0,21	0,06	0,65	0,28	132	2,7		1,12	0,49	15,50		95	;
112	Koursi	Argile	27	19	53	7,85	6,60	0,37	0,09	0,58	0,29	137	3,2	•	1,36	0,49	16,17	2,61	91	
113	Moursi	Argile	30	10	61	8,12	6,61	0,18	0,17	0,48	0,23	131	2,3		1,20	0,38	16,05	2,34	83	;
114	Noursi	Argile	31	17	52	8,20	6,60	0,28	0,03	0.49	0,27	124	3,5		1,44	0,42		2,42	92	(
115	Moursi	Argile	26	18	56	8,27	6,83	0,25	0,29	0,34			20,1		1,04	0,24		1,46	52	,
116	Moursi	Argile	29	18	52	8,24	6,76	0,22	0,13	0,37		121	1,5		1,48	0,38	16,02		89	1
117	Moursi	Argile	32	18	50	7,78	6,54	0,16	0,03	0,61	0,26	127	1,0	21,0	0,92	0,33		1,68	68	
118	Noursi	Argile	33	16	52	7,73	6,34	0,22	0,03	0,54		121	1,2	-	1,32	0,40	,	1,66	100	
119	Moursi	Argile	28	19	53	7,76	6,46	0,26	0,03	0,5!		132	1,8	23,3	1,36	0,42	14,82		81	
120	Moursi	Argile	29	19	53	8,00	6,58	0,34		0,43		134	2,2	21,8	1.32	0,38	16,67	2,52	9 5 95	
121	Moursi	Argile	32	17	52	7.76	6.45	0,24	0.09	6,55		110	9.19	50.1	1.59		11. 55			
122	Hoursi	Argile	33	18	49	7,67	6,29	U, 16	U,UJ	U,45		121	1,8	15,1	0,62	0,29	14,51		90 100	
123	Moursi	Argile	34	15	51	7,03	6,13	0,16		0,81	_	155	1,0	17,2	0,30	0,38	19,28	1,51	100	
124	Moursi	Argile	35	17	48	7,94	6,60	0, 30	0,12	0.46		131	6,0	18,4	1,36	0,31	19,17	1,47	86	
125	Moursi	Argile	32	19	49	7,56	6,36	0,20		0,61		137	1,5	20,5	0,58	0,33	15,30		93	
126	Noursi	Argile	31	17	52	7,70	6,40	0,16	0,00	6,33		126	1,0	24,1	0,67	0,26	16,89	4,74	99	
127	Koursi	Argile	33		50	7,32	6,79	0,19	0,03	0,63		126	1,2	23,7	0,50	0,30	18,62		97	
128	Moursi	Argile	32		\$1	7,75	6,42	0,20	0,00	0,32		114	1,8	22,7	0,80	0,30	16,32 17,78		100	
129	Noursi	Argile	34		49	7,63	6,38	0,27	0,14	0,43		132	2,2	23,3	0,80	0,36 0,26	17,84		100	
130	Moursi	Argile	33		\$1	7,76	6,47	0,21	0,03	0,42		129	3,0	23,7	0,71	0,43	19,67	7,08		
131	Noursi	Argile	20		65	7,42	6,20	0,20		0,6		183	1,8	30,7	0,92	0,43	19,30			
132	Noursi	Argile	21		65	7,55	6,24	0.25		0,6		113	1,0	29,9 25,6	0,32		20,03		100	
133	Noursi	Argile	22			7,76		0,29				160	6,0	28,8			19,56		•	
134	Noursi	Argile	20		66	7,17	6,54		0,14			160 145	2,2 1,6	28,2		0,10	20,35	6.78		
135	Moursi	Argile	21		64	7,69	6,50	0,30				145	1,0	27,8		0,49	17,47			
136	Moursi	Argile	28		54	7,42	6,25	0,22				133	1,4	26,0			17,68			
137	Noursi	Argile	28			7,74		0,24		0,6		133	1,0	23,9			15,27			
138	Noursi	Argile	34			7,10	6,18	0,20					2,0	22,2						
139	Noursi	Argile	36			7,05	5,93	0,17				123	1,6	23,0						
140	Moursi	Argile	33			7,30		0,24						26,3			17,26			
141	Moursi	Argile	29			7,70						96		19,1		0,22				
142	Moursi	Argile	35			7,66								24,5						
143	Moursi	Argile	28			7,24								14,8						
144		Argile	44			7,68								19,1				5,40		
145	Moursi	Argile	34			7,18								15,0						
146	Moursi	Limon-Argilenx				8,63			0,11 0,25					16,3				4,11		
147	Moursi	Limon-Argileux				8,95								15,7						
148	Moursi	Argile	34			8,25								16,3				4,1		
149	Moursi	Argile	33			8,09								13,1		0,22		3,1		
150	Moursi	Limon-Argileux	38	3 1	31	8,35	6,27	0,13	0,03	0,7	2 0,15	01	1,1	10,1	0,34	,	0,11	0,1	. ••	

-Code Lieu	Type de Sol nom vernac.	Texture Classe	Sab.	Lin.	Arg.	pH-Eau	pH-RC]	C.E.	CaCO3	C :	K20 mg/100g		P.ass	CEC	Na n	K eq/100;	Ca 8	Ng 	satur.	ESP
A 0.5	Donas Blá	1-4:10	31	20	49	5,97	3,87	0,02	0,11	0,59	0,14	118	2,2	17.0	0,20	0.27	6,12	4.14	63	1
201 202	Danga Blé Danga Blé	Argile Argile	44	15	40	5,92	4,06	0,02	0,00	0,40	0,14	103	1,0	12,3	0,12	0,24	7,21		86	0
203	Danga Blé	Argile Sableuse		14	37	6,21	4,58	0,02	0,00	0,32	0,13	98	2,8	12,0	0,16	0,24	5,97	2,60	74	1
204	Danga Blé	Argile	60	14	26	6,18	4,51	0,02	0.00	0,92	0,14	84	2,6	8,6	0,12	0,17	2,84	1,86	58	1
205	Danga Blé	Argile	41	15	44	6,03	4,43	0,02	0,00	1,14	0,13	111	4,2	11,8	0,08	0,17	5,82	2,18	69	0
301	Danga Ping	Limon	42	39	18	5,55	3,90	0,04	0,00	0,49	0,28	103	0,6	17,2	0,31	0,46	9,02	2,90	73	1
302	Danga Ping	Limon-Argileux	42	19	39	5,50	3,83	0,04	0,00	0,30	0,30	111	2,2	15,9	0,55	0,46	10,27	3,02	89	3
303	Danga Fing	Argile	24	18	58	5,78	4,06	0,04	0,00	0,58	0,34	103	1,0	14,5	0,32	0,51	9,06	5,91	100	2
304	Danga Ping	Argile	20	17	63	6,02	4,55	0,05	0,00	0,50	0,13	128	1,2	17,3	0,36	0,28	9,32	5,80	91	2
305	Danga Ping	Argile Sablense		15	3.0	5 60	3,00	0,03	0,00	6.51	0,22	130	1.2	10,6	0.21	0,36	5,09	2,81	79	!
30-	banga Ping	Argile	39	17	45	6.14	4,44	0,04	0,00	0,53	0,24	104	1,2	13,9	0, 25	0,41	5,87	3,68	73	1
307	Danga Ping	Limon Arg. Sabl.	47	18	35	6,43	4,47	0,07	0,00	0.58	0.15	11	0,8	12,1	0,55	0,23	6,13	3,04	82	4
308	Danga Ping	Argile	39	17	43	6,22	4,70	0,05	0,00	0,53	0,12	91	0,1	15,6	0,43	0,26	6,97	4,32		2
309	Danga Ping	Limon-Argileux	40	20	40	5,11	3,93	0,70	0,00	0,59	0,23	96	1,0	14,5	1,64		6,94	4,16	91	11
310	Danga Fing	Argile	38	15	46	6,13	3,62	0,09	0,00	0,39	0,06	121	2,4	16,3	0,62	0,41	8,02	4,57	83	3
101	No. a.d.	Limon Sableux	76	16	8	6,02	4,35	0,02	0,00	0,17	0,07	57	1,6	3,3	0,07	0,08	1,47	0,55	65	2
401	Danga	Limon Sableux	70	16	14	6,45	5,35	0,07	0,00	0,34	0,07	66	1,0	5,2	0,21	0,10	3,74	1,01	97	4
402	Danga	Limon Sableux	73	15	13	6,19	4,56	0,02	0,00	0,22	0,08	59	0,8	3,6	0,10	0,08	1,75	0,66	71	2
103	Danga	Limon Sableux	68	18	14	6,05	5,08	0,05	0,00	0,20	0,15	54	0,2	5,4	0,07	0,08	2,66	0,88		1
404	Danga	Limon Sableux	72	17	11	6,33	4,56	0,01	0,00	0,10	0,08	58	1,6	4,6	0,00	0,10	1,33	0,55		0
405 406	Danga Danga	Limon Sableux	70	16	14	6,49	5,29	0,03	0,00	0,09	0,14	55	1,0	4,2	0,10	0,10	1,92	1,00	74	2
407	Danga	Limon Sableux	67	16	17	6,54	5,82	0,11	0,00	0,26	0,08	68	1,0	6,6	0,32	0,18	4,45	1,48	97	4
408	Danga	Limon Sableux	66	19	15	5,80	4,24	0,03	0,00	0,33		58	2,0	6,0	0,25	0,10	2,38	1,01	62	4
403	Danga	Limon Sableux	70	16	14	6,24	4,85	0,13	0,00	0.47	0.15	63	2,6	6,7	0,09	0,05	1,35	0,47	29	1
410	Danga	Limon Arg. Sabl.	55	24	21	6,21	4,90	0,03	0,00	0.16		68	0,8	8,4	0,25	0,13	3,64	1,77	68	2
411	Danga	Limon Arg. Sabl.	56	15	28	7.38	6 58	0,17	0.00	0.98	0,13	84	2,4	7.3	0,02	0,30	7,20	1,73	100	ı,
412	Danga	Limon Sableux	69	17	15	6,42	5,15	0,03	0,00	0,38	0,25	82	2,8	5,4	0,15	0,18	3,39	0,86		2
413	Danga	Limon Sableux	72	18	10	6,04	4,72	0,04	0,00	0,29	0,14	87	5,4	3,4	0,12	0,13	2,00	0,67		3
414	Danga	Limon Sableux	71	20	9	5,72	4,92	0,02	0,00	0.33	0,37	63	2,4	3,7	0,02	0,08	0,71	0,23		0
415	Danga	Limon Sableux	76	16	3	6,70	5,16	0,10	0,00	0,55	0,08	74	3,6	5,1	0,22	0,33	1,57	0,54		4
416	Danga	Limon Sableux	70	18	12	5,38	4,50	0,04	0,00	0,52		87	1,4	5,3	0,02	0,15	1,68			0
417	Danga	Limon Sableux	71	18	11	5,66	4,82	0,11	0,00	0,57	0,38	168	3,6		0,09			0,47		1
413	Danga	Limon	39	40	21	6,58	4,99	0,04	0,00	0,16	0,10	76	2,0	6,1	0,32	0,10		1,32		5
419	Danga	Limon	40	40	20	6,33	5,13	0,05	0,00	0,14		82	3,0	5,6	0,05	0,03	0,63			0
420	Danga	Limon	39	43	18	6,18	5,08	0,06	0,00	0,26		74	1,0	6,4	0,32	0,10	1,70			5
421	Danga	Argile Sableuse	45	16	39	6,15	4,55	0,22	0,00	0,38		116	5,6	14,0	0,12	0,08	2,03			()
422	Danga	Limon Arg.Sabl.	50	18	32	5,47	4,24	0,03	0,00	0,49		103		12,5	0,46	0,20	3,35			3
423	Danga	Limon-Argileux	45	18	37	5,60	4,56	0,02	0,00	0,34		103	5,5	12,1	0,22	0,28		2,82		1
424	Danga	Limon Arg.Sabl.	46	20	33	5,74	4,46	0,03	0,00	0,41		100	10,3	10,3	0,05	0,18		1,77		0
425	Danga	Limon Arg. Sabl.	54	21	26	5,90	4,70	0,04	0,00	0.14		74		6,7	0,05		-9,99			
428	Danga	Limon Arg. Sabl.	47	22	31	5,90	4,73	0,02	0,00	0,22		82	8,9	10,1	0,56		3,48			5
427	Danga	Limon Arg.Sabl.		23	23	5,65	4,60	0,02	0,00	0,17		79	1.7	5,4	0,46			1,6		8
428	Danga	Limon Sableux	60	24	16	6,30	5,66	0,02	0,00	0,25		76	2,6	6,9	0,40			1,39		5
429	Danga	Limon Sableux	61	24	16	6,35	5,62	0,03	0,00	0,36		82	4,3	6,4		0,28	3,57			9 15
430	Danga	Limon Sableux	68	20	12	5,90	6,40	0,02	0,00	0,20	0,17	74	4,5	5,4	U, B2	0,15	2,29	0,9	, 11	13

501 Dian				1	ĭ			nahos		*	∎g/lüüg	pp.	₽₽∎		[eq/100g			1	
502 Dian 503 Dian	l .	Argile Sableuse Argile Limon Arg.Sabl.	43 57	14 16 21	36 41 23	5,80 6,08 5,60	4,86 4,51 4,76	0,04 0,05 0,06	0,00 0,00 0,02	0,39 0,34 0,31	0,19 0,20 0,12	105 103 76	3,5 1,6 1,8	13,4		0,23 0,28 0,20	4,86 5,07 3,24	2,77 1,45	69 67 6 6 82	3 6 7 2
504 Dian 505 Dian		Limon Arg.Sabl. Limon Arg.Sabl.		18 18	34 29	6,50 5,22	5,50 3,65	0,05 0,02	0,00 0,00	0,39 0,41	0,22 0,17	103 89	2,0 2,9	12,1	0,22 0,09	0,28 0,23	5,05 4,77	2,28	60	0
506 Dian	1.	Limon Arg.Sabl.	52	16 20	33 32	7,55	6,16 6,73	0,13 0,17	0,00 0,02	0,06 0,16	0,17 0,16	89 108	2,8 4,3		0,94		7,22 8,14	3,62 3,05	86 97	6 5
507 Dian 508 Dian		Limon Arg.Sabl. Limon Arg.Sabl.	48 51	19	30	6,96	5,87	0,07	0,09	0,35	0,15	82	2,0	12,6	0,28	0,18	7,27	2,50	81	2
509 Dian		Limon-Argileux Limon-Argileux	43 36	22 26	34 39	6,90 7,54	5,56 6,49	0,04 0,26	0,00 0,00	0,15 0,48	0,17 0,29	103 103	2,4 3,7		0,35	0,23 0,38	6,03 11,31	3,11 4,44	73 83	2 4
510 Dian 511 Dian		Limon-Argileux Limon-Argileux	42	24	34	6,50	5,23	0.07	Ü, nn	U 10	4,12	0.5	3.3	14,6	Ú 33	U.18	6,24	2,41	60	5
512 Diam		Argile	34 37	17 14	49 48	6,50 6,28	4,71 5,10	0,08	0,00 0,00	0,57	0,10 0,10	111 122	2,0 3,1		0,42	0,20 0,18	7,69	3,53 3,48	64 99	6
513 Dian 514 Dian		Argile Argile	22	14	65	5,40	4,46	0,19	0,00	0,21	0,06	140	3,1	19,8	1,05	0,18	7,64	3,99	64	5
515 Dian		Argile	22	16	63	6,19	4,92	0,08 0,13	0,00 0,00	0,55 0,55	0,27 0,21	124 114	1,4	18,2 17,8	0,42	4,30 0,33		4,68	100 88	2 4
516 Dian 517 Dian		Argile Argile	31 18	15 15	54 67	8,84 6,74	7,40 4,80	0,13	0,00	0,33	0,19	154	1,6	21,2	0,39	0,30	8,61		65	1
518 Dian	1	Argile	19	20	61	6,11	4,86	0,08	0,00	0,43	0,18	177	1,4	21,3	0,42	0,35	7,72		61 67	1
519 Dian 520 Dian		Argile Sableuse Argile	50 41	15 14	35 45	6,06 7,33	5,16 6,30	0,08 0,13	0,00 0,00	0,27 0,27	0,11 0,15	103 95	3,3 6,7		0,56 1,21	0,13 0,25	5,67 11,14	3,09	80	6
520 Dian 521 Dian		Argile	39	17	44	7,72	6,80	0,33	0,00	0,25	0,14	138	13,9	17,3	0,90	0,23	12,61		97	5
522 Dian		Argile	24	19 16	57 42	5,35 5,70	4,40	0,36 0,06	0,00 0,00	0,49 0,48	0,17 0,24	135 116	1,8 3,1	19,2 14,3	0,32	0,33 0,3 8	6,92 4,95		60 53	1
523 Dian 524 Dian		Argile Argile Sableuse	42 46	15	40	6,00	5,00	0,10	0,00	0,35	0,17	116	2,2		0,18	0,33	4,48	2,71	57	1
525 Diam		Argile	42	15	43	5,86	4,86	0,06	0,00	0,36	0,14	127	2,2	14,6	0,35	0,25	5,32	3,16	62	2
	Noursi		39	18	43	6,72	6,00	0,20	0,00	0,44	0.18	100	1,6	21,0	0,71		11,48	3,72 2,80	77 84	3 2
	n Moursi n Moursi	Limon Arg.Sabl.	52 41	16 19	32 41	6,90 6,5 6	5,61 5,44	0,05	0,00	0,25 0,35	0.11 0.14	85 103	1.0	10,6	0,31	0,21		4,23	100	4
604 Diam	Moursi	Argile	42	16	42	6,20	5,51	0,13	0,00	0,54	0,24	93	1,2	16,2	0,67	0,42	8,79	4,29	87 0.1	4
605 Dian	Moursi	Argile Sableuse	47	16	37	6,84	5,68	0,07	0,00	0,30	0,15	.4 0	1,0	11,9	0,51	0,25	6,41	3,71	91	4
701 Seno		Limon Sableux		16		7,10 7,14	6, 5 0 6, 4 0		0,00 0,00		0,36		$\frac{55,2}{12,0}$		0,59 0,55			0,70 1,54	100 100	17 11
702 Seno 703 Seno		Limon Sableux Limon Sableux	77 77	12 13	11 9	5,50	4,13	0,20	0,00	0,28	0,07	69	8,5	3,7	0,12	0,09	1,18	0,27	44	3
704 Seno)	Sable Limoneux	80	11	9	6,35	5,52	0,07	0,00	0,46	0,11	66	6,5	3,3	0,47			0,55 0,27	9 4 61	14 15
705 Seno 706 Seno		Sable Limoneux Limon Sableux	80 69	13 13	8 17	5,20 9,76	4,14 8,61	0,02 1,72	0,00 0,00	0,26 0,32	0,10 1,55	53 351	5,3 252,0	2,6 10,0		0,14		0,27	75	7
707 Send		Sable Limoneux	81	13	7	5,60	4,25	0,02	0,00	0,40	0,10	46	4,7	2,6		0,11		0,24	47	4
708 Send		Limon Sableux	76	14	10	5,86	4,36	0,01 0,01	0,00 0,00	0,26 0,36	0,09 0,12	58 5 0	2,4 2,6	2,7	0,12	0, 09 0,14	1,27	0,48	72 81	2
709 Senc 710 Senc		Limon Sableux Limon Sableux	76 66	16 25	8 8	5,44 4,46	4,45	0,01	0,00	0,30	0,07	53	4,9	3,1	0,55	0,09	1,01	0,34	64	17
711 Seno	0	Limon Sableux	67	25	8	5,16	4,10	0,01	0,00	0,17	0,04	66	6,2	3,3	0,16 0,00	0,02	0,23 0,09	0,09 0,04	15 6	4
712 Seno 713 Seno		Limon Sableux Limon Sableux	64 69	27 23	8 8	5,12 5,27	4,09	0,02 0,02	0,00 0,00	0,34		53 53	3,1 2,6	2,3 3,1		0,02		0,42	61	6
714 Send		Limon Sableux	76	14	10	4,95	3,98	0,01	0,00	0,22	0,08	56	3,7	4,1	0,12	0,09	1,03	0,44	40	2
715 Seno	0	Sable Limoneux	81	13	6	5,58	4,76	0,03 0,01	0,00 0, 00	0,13 0,21	0,04	40 45	1,4 2,4	1,9 2,3		0,05 0,09		0,05 0,28	83 62	7 6
716 Senc 717 Senc		Sable Limoneux Sable Limoneux	81 81	14 14	6 5	4,91 6,85	4,06 6,50	0,01	0,00	0,21			51,5	2,9		0,23		0,28	100	23
718 Send	0	Limon Sableux	76	15	9	6,48	5,95	0,07	0,00	0,32	0,20	143	24,9	5,0		0,23		1,28	100 87	4
719 Send		Limon Arg. Sabl. Limon Sableux	63 79	17 11	20 10	5,94 5,48	4,80	0,04 0,01	0,00 0,00	0,17 0,42		87 66	2,7 2,0	8,9 4,7		0,16		2,21 0,74	55	4
720 Send 721 Send		Linon Sableux	70		16	5,55	4,38	0,01				82	2,6	5,4	0,06	0,16	2,47	1,10	70	1
722 Send	0	Limon Sableux	72	14	14	6,32	4,86	0,03	0,00	0,43		98	2,6	5,0		0,14		0,87	59 85	3 2
723 Send		Limon Sableux Sable Limoneux	70 78		15 8	6,05 6,90	4,94 6,10	0,02 0.14	0,00 0,00			68 95	1,6 19,4	4,6 3,2		0,14 0,28	1,73	1,13	99	22
724 Send 725 Send		Limon Sableux	69		18	6,53	4,76		0,00				2,2			0,14		0,97		13

RESULTATS DES ANALYSES DE SOL EFFECTUEES SUR LES ECHANTILLONS PRELEVES EN HIVERNAGE 1987 SUR LE PROJET RETAIL

3 HORIZONS : 0-20, 20-60, 60-100 cm

Texture, pH, conductivité

Projet Retail R-D et IER Labo de Sotuba, mai 198

			:: 	HORIZON	DE SU	RFACE	(0-2	0 cm)		HORIZON 20-60 cm						· · · · · · · · · · · · · · · · · · ·	KC	RIZ	-03 MC	100 cm -			
			¥ 	Cab	14.	4		Н	٠.	* Texture	Sah	li∎.	A ra	n	H	C.F.	¶ ¶ Texture S	ab. I	ie.	Arg.	рН	C.	.ξ.
		Type de Sol nom vernac.	Classe	3aD.	Lia.	RIQ.				Classe	\$	1	1				Classe	1	ŧ	1	Eau KC		
	TEA	IIVE TCTINGO.	**************************************	•	•	•				# # #									_				
	101	Moursi	Argile	31	14	55		6,5	•		34	13	53		6,0	,34	Argile	35	9	56	8,4 6, 8,2 6,	-	
		Moursi	Argile	31	12	57	1,1		,78	Argile	26	14	61	8,1	6,7	,45	# Argile # Argile	27 38	14 12	60 51	8,2 6,		
		Hoursi	Argile	34	14	52		6,6	,37	Argile	37 20	13 14	50 57	8,2 8,1		,24 ,33	Argile	27	14	59	8,2 6,	-	32
		Moursi	Argile	31	13 16	56 48	8,1 7,7	6,6 6,6	,40 ,30	<pre>Argile Argile</pre>	29 40	12	49	7,8	6,6	,20	Argile	37	12	49	7,8 6,	-	
		Moursi	Argile Argile	36 33	13	43 54	7,7	6,5	,31	Argile	36	15	49	1,1	6,4	,21	Argile	34	15	51	7,8 6,		19
		Moursi Moursi	Argile	30	12	58	7,8	6,6	,34	Argile	25	14	62	8,1		,39	Argile	23	16	61	8,2 6,	6,4	11
		Hoursi	Argile	33	17	50	1,1		,31	Argile	33	16	51	8,0	6,6	,24	Argile	34	16	50	8,1 6,	-	
		Moursi	Argile	27	18	55	7,9	6,7		- A.	29	14	57	8,1	6,8	,33	<pre># Argile Sabl.</pre>	46	17	38	8,3 6,		
		Moursi	Argile	29	17	54	7,9	6,6	,34	Argile	32	15	53	8,0	6,7	,38	Argile	31	13	56	8,3 6,	-	
		Moursi	Argile	27	19	54	1,7	6,4	,21	argile 🖁	27	17	56	8,1	6,5	,17	Argile	25	18	57	8,2 6,		19
	112	Hoursi	Argile	28	19	53	7,9	6,6	,37	Argile	25	18	58	8,3	6,8	, 38	Argile	23	16	62	8,3 6,		39
	113	Moursi	Argile	29	10	61	8,1		,18	Argile	29	16	55	8,4	6,6	, 20	Argile	30	15 19	55 54	8,5 6, 8,5 6,		24 37
		Moursi	# Argile	31	17	52	8,2		,28	Argile	28	16	56	8,3	6,7	,34	Argile Argile	26 24	19	57	8,5 6,		37
		Hoursi	Argile	26	18	56		6,8	,25	Argile	24 30	20 18	56 53	8,4 8,4	6,8	,29 ,20	Argile	28	16	55	8,4 6,	-	21
		Moursi	Argile	29	18	52 50	8,2		,22 ,16	Argile Argile	29	18	53	8,0	6,4	,16	⊞ Argile	30	17	53	8,3 6,		18
		Moursi	Argile Argile	32 33	18 16	52	7,8 1,1		,22	Argile # Argile	27	20	54	8,1	6,4	,17	Argile	29	18	53	8,1 6,		19
		Hoursi Hoursi	- Argile	28	19	53		6,5	,26	Argile	24	18	58	8,2	6,5	,24	Argile	25	19	57	8,3 6,	5 ,	26
		Noursi	Argile	29	19	53	8,0	6,6	34	Argile	26	18	56	8,4	6,6	, 34	* Argile	31	16	53	8,2 6,	7 ,	34
			Argile	32	17	52	7,8	6,5	, 24	Argile	28	17	56	8,0	6,7	, 22	Argile	28	17	55	7,9 6,		22
i i		Moursi	Argile	1, 7,	10	10	י י	A , 3	1.7	argile	20	14	5.7	٥,٩	6,4	10	arzile	25	10	ς,	7,8 6,		15
ı	123	Moursi	Argile	34	15	51	7,0		,16	∦ Argile	32	16	52	7,8	6,3	,17	Argile	32	16	51	7,8 6,		20
ı	124	Hoursi	* Argile	35	17	48	7,9	6,6	,30	* Argile	32	16	53	-	6,6	,31	Argile	28 32	16 16	56 52	8,2 6, 7,7 6,		33 15
	125	Moursi	Argile	32	19	49	7,6	6,4	,20	Argile	28	19	54		6,3	,15	Argile Argile	29	18	53	7,7 6,	_	15
		Moursi	Argile	31	17	52	1,1	6,4	,16	Argile	30 27	16 17	55 56	7,9 7,9	6,4 6,1	,13	Argile	27	16	57	7,7 6,		15
		Hoursi	Argile	33	17	50	7,3		,19 ,20	Argile Argile	31	15	54	7,8	6,6	,22	Argile	32	16	51	7,8 6		22
		Moursi	Argile Argile	32 34	17 17	51 49	7,8 7,6	6,4	,21		29	17	54	8,1	6,7	,31	# Argile	28	17	55	8,1 6		31
		Moursi Moursi	Argile	33	16	51	7,8	6,5	,21	Argile	29	16	55	7,9	6,4	,19	Argile	28	19	54	7,7 6	4,	18
		Moursi	Argile	20	16	65			,20	Argile	17	14	69	7,8	6,2	,26	∥ Ar gi le	16	13	12	7,8 6		30
			Argile	21	14	65		6,2	,25	Argile	18	16	65	1,9	6,3	,30	∖ Argile	18	14	69	8,1 6		35
		Moursi	Argile	22	14	64	7,8	6,5	,29	Argile	17	11	73	8,0	6,6	, 35	Argile	16	11	73	8,1 6		45
		Moursi	Argile	20	14	66	7,8	6,5	, 34	Argile	19	14	67	7,7		,42	Argile	20	15	66			44
	135	Moursi	Argile	21	15	64	1,1		, 30	Argile	21	14	66	7,9		,35	Argile	20	15	65			36 20
_		Moursi	Argile	28	18	54	7,4		,22	Argile	23	19	58	8,0		, 26	<pre>Argile Argile</pre>	24 21	18 19	59 56	8,1 6 8,2 6		30 34
		Moursi	<pre>Argile</pre>	28	17	55	1,1		,24	Argile	24	17 17	59 48	8,1 7,3	6,5 5,8	,28 ,09	# Argile	38	14	47		_	06
		Moursi	# Argile	34	18	49	7,1		,20 ,17	Argile Argile	36 32	17	52	7,3	5,9	,15	Argile	32	18	50			13
		Hoursi Maurai	Argile	36 11	18 17	46 50	7,1 7,3		,24	Argile	35	15	51	8,0	6,6	,25	Argile	33	15	52			27
		Moursi Moursi	Argile Argile	33 29	18	53	1,1		,24	Argile	25	18	57	8,0		,12	Argile	28	17	55			10
		Moursi	Argile	35	18	47	1,1		,11	Argile	29	19	51	7,8	6,3	,22	Argile	29	17	54			,11
		Moursi	Argile	28	19	53	1,2		,22	Argile	26	17	57	8,0	6,7	,22	Argile	24	18	58	-		,20
		Moursi	Argile	44	16	41	1,1		,10	Argile	35	17	49	7,4	5,4	,06	Argile	34	17	49			,06
		Hoursi	Argile	34	21	45	7,2		,20	* Argile	37	17	46	7,9		,13	Argile	36	17	47	•		,10
•		Moursi	Lim.Arg.		27	39	8,6		,34	Argile	34	25	41	8,8	6,9	, 26	Argile	31	26	43			,34 10
		Hoursi	Lim.Arg.	_	22	34	9,0		,37	# Lim.Arg.	40	24	36	9,1		,44	# Lim.Arg.Sabl		24	31 49	-		,19 ,12
		Moursi	Argile	34	25	41	8,3		,28	Argile	24	26	50		6,6	,26 ,25	Argile Argile	23 30	28 29	41			,12
-		Moursi	Argile	33		42	8,1		,10	Argile	29 27	29 33	42 40	8,4 8,5	6,6 6,1		Argile	22	35	43	5,9 4		
_	150	Moursi	≝ Li∎.Arg.	. 38	31	31	8,4	0,5	,19	Argile	T.I	JJ	40	٠, ٦	٠,1	, 4 1	HI GILC	••	••			,- '	

			HORIZON	DE SU	IRFACE	(0-2	0 cm)		8			HOR120	ON 20-	-60 c∎			w X	-	HORI Z	ON 60-	-100 c	ı	
										Tautuma	Cab	ı.	Ara	p	u	r e	Texture	Sah.	Lin.	Ara.	p	H	C.E.
	Type de Sol			. lie.	-		H					lim.	RΓY.				Classe	tab.		1	-		nahos
Lieu	nom vernac.	Classe	*	*	*	Fau	KCI	BBNOS	100	Classe	٠	•	•	Lau	MUI	EEIIOS	01030C	•	•	•			
	0	# # A:1-	71	20	49	4.0	7 0	,02	W. C.	Argile	25	20	55	5.7	3.1	,01	# Argile	25	20	56	5,8	4,5	,02
	Danga Blé	# Argile	31 44		40		4,1	•	2.8	Argile	31	16	53	5,7			Argile	30		55	5,8	4,4	,03
	Danga Blé		•• Sabl. 49		37		4,6	,02	- 20 - 20 - 20	Argile	30	13	57			,04	Argile	22	18	60	5,9	4,5	,02
	Danga Blé Danga Blé	# Argile	60 . 47		26		4,5		1038	Argile Sabl.		11	36				# Argile	29	12	59	5,7	4,2	,03
	Danga Blé	Argile	41		44	-	4,4			Argile Sabl.			43				Argile	32	11	57	5,4	4,1	,05
203	vallya bic	# wi Arre	71	14	71	٠,٠	.,.	,	100	3221 1222				·			75. 76.						
301	Dan ga Fing	Limon	42	39	18	5.6	3.9	,04	W. 100	Argile	30	17	53	5,0	3,5	,03	# Argile	28		55		4,1	
	Danga Fing	Lim.Arg			39		3,8		3.44 44 3.44 3.44 3.44 3.44 3.44 3.44 3	Argile	35	15	50	5,5	3,8	•	Argile	35		48		4,4	
	Danga Fing		24		58		4,1		 	Argile	21	17	62			•	Argile	21		63		4,1	
	Danga Fing	Argile	20		63		4,6		-77	Argile	24	18	58		-		Argile	29		\$5		3,6	
	Danga Fing	-	Sabl. 47	15	38	5,6	3,9	,03		Argile	41	15	44	-			Argile	25		60		3,8	
	Danga Fing	-	39		45	6,1	4,4	,04	1	Argile	28	15	57		4,6		Argile	37		46		3,1	
	Danga Fing		.Sabl 47	18	35	6,4	4,5	,07	W.	Argile	39	18	44		-	,	Argile	34		49		3,7	
	Danga Fing	Argile	39	17	43		4,7		# #	Argile	34		50	-		,	# Argile	35		48		3,8	
309	Danga Fing	🔅 Lim.Arg	. 40	20	40	5,1	3,9	,70			36		44			,	Argile	29		56		3,8	
310	Danga Fing	Argile	38	15	46	6,1	3,6	,09	27	Argile	31	15	54	5,4	4,7	,05	Lim.Arg.Sal	01 20	17	33	0,2	4,6	,02
		Ę.							4								i: - Linna Cabl	47	21	14	4.1	4,7	0.2
401	Danga	Limon S			8			,02	i S	Limon Sabl.			14			,02	Elimon Sabl Argile	. 63 31		16 59	-	4,3	
402	Danga		abl. 70		14		5,4			Limon Sabl.			13			,03	: Argile Sab			38		4,7	
	Danga		abl. 73		13		4,6		i.	Limon Sabl.			17				Lim.Arg.Sal			31		4,3	
	Danga		abl. 68		14		5,1		Á	Limon Sabl.			16			,05 ,02	Argile Sab			36	6,2		,02
	Danga		abl. 72		11			,01		Lia.Arg.Sabl			21			,02	Lim.Arg.Sal			31	-		
	Danga	A .	abl. 70		14	-	5,3			Limon Sabl.			16 22	-	-		Eim.Arg.Sal			34	5,6		
	Danga	Limon S			17		5,8	•	3	Lim.Arg.Sabl Lim.Arg.Sabl		-	22			,02	Limon Sabl			5		4,0	
	Danga		abl. 66		15 14		4,2			Limon Sabl.			18		5,0		Lim.Arg.Sa			27			,02
	Danga	Limon S	abi. 70 .Sabl 71				4,9			timon Sabl.			18			,05	Li∎.Arg.Sa			23			
	Danga	Eim.Arg					6,6		ĺ	Lim.Arg.Sab			29			,18	Lim.Arg.Sal			34	1,1	6,9	,18
	Danga Danga		abl. 69			-	5,2		Ä	Lie.Arg.Sab			28			,04	Argile Sab	1. 47	17	37	5,9	5,1	,04
	Danga Danga		abl. 72				4,7			Lim.Arg.Sab			22		3,9		: Lim.Arg.	41	21	38	-		,02
	Danga Danga		abl. 71				4,9			Lim.Arg.Sab			21	5,4	3,9	. ,03	Argile	36		42			,02
	Danga		abl. 76					,10		Limon Sabl.	66	16	18	6,2	4,6	,07	Lim.Arg.Sa			34			,05
	Danga		abl. 70		12	5,4	4,5	,04		Lim.Arg.Sab	52	20	28	6,2	5,0	,04	Lim.Arg.				6,1		
	Danga	Elimon S			11		4,8			Lim.Arg.Sab	1 57	20	24	6,7	4,7		Argile Sab			37	6,4		
1	Danga	ti∎on	39	40	21	6,6	5,0	,04	Ī	Lim.Arg.	32		28	•	4,0		Lim.Arg.	28		40	6,0		•
	Danga	Limon	40	40	20	6,3	5,1	,05		Limon	35		23	6,4	4,7	•	₹ Lim.Arg.	21		36	6,2		
420	Danga	Limon	39	43	18	6,2	5,1	,06	4	Limon	36		27		5,6	•	Lim.Arg.	42		29		6,4	
421	Danga	≝ Argile	Sabl. 45	16	39		4,6		1	Argile	36		48	5,7			» Argile	35		51		3,8	
422	Danga	🧗 Lim.Arg	.Sabl 50		32		4,2		*	Argile	43		41		3,9		Argile	39		47	5,4		
423	Dang a	€ Lim.Arg					4,6		1	Argile	31		55	5,7			Argile	32 21		52 59	5,7	3,9	
424	Danga		j.Sabl 46				4,5			Argile	30		54		4,5		# Argile	43				3,9	
	Danga		.Sabl 54				4,7			Lim.Arg.Sab			35		3,9		Lim.Arg. Argile	35				3,8	
	Danga		j.Sabl 47				4,7			Argile	40		41		3,9		Lim.Arg.	44				3,9	
	Danga		.Sabl 59				4,6		4	Lim.Arg.Sab			28 2 9		4,0		Argile	40				4,1	
	Oang a		Sabl. 60				5,7		674	Lim.Arg.Sab			29		3,8		Argile Sab					3,7	
	Danga		Sabl. 61				5,6			Lim.Arg.Sab			26			,10	Lim.Arg.	43					,12
430	D anga	LIBON	Sabl. 68	8 20	12	5,7	6,4	,02		Lim.Arg.Sab	1 37		10	0,5	٠,٥	, , , , ,	Lia.my.	• •	• • •	••	-,.	.,.	•

	:	# HORIZON DE SURFACE				(0-20 cm)				HORIZOM 20-60 cm						HORIZON 60-100 cm							
	Type de Sol			. li.			H KC1			lexture Classe	Şab. ♣	tia.	Arg.	pi Fau			lexture Classe	Sab.	tis.	Arg.	pH Eau		C.E.
Lieu P	nom vernac.	# Classe	*	*	*	Eau	KCI		*********	G1833C	•	•	•										
501	Oian	Argile Sat		14	36		4,9			Argile	44	15	41	6,4		,	Argile	39 30	14 14	47 55	•	∮,9 3,8	,06 ,02
502	Dian	Argile	43	16	41	6,1	4,5	,05	新新新教	Argile	32	15 18	53 32	6,1 6,1	4,0 4,6	,03 ,03	Argile Argile	44	15	40		1,6	,03
503	Dian	Lim.Arg.Sa		21 18	23 34	5,6	4,8 5,5	,06 ,05	10000	Lim.Arg.Sabl Lim.Arg.	44	17	39	6,0	4,4	,03	Argile	39	17	43		1,7	,03
504 505	Dian Dian	Lim.Arg.Sa Lim.Arg.Sa		18	29	5,2	3,7	,02	100	Lim.Arg.	44	20	37	5,5	4,4	,03	Argile	41	17	42	•	3,7	,02
506	Dian	Lim.Arg.Sa		16	33	7,6	6,2	,13	1	Lim.Arg.Sabl	47	18	35	8,3	6,8	,31	Argile Sabl.		15	35		7,1	,41
507	Dian	∰ Lim.Arg.Sa		20	32	1,1	6,7	,17	200	Lim.Arg.	43	19	39	7,8	6,5	,10	# Argile # Lim.Arg.	37 42	23 20	41 38	•	6,3 6,0	,12 ,05
508	Dian	Lim.Arg.Sa		19	30	7,0	5,9		教育	Argile Sabl. Argile	46 34	18 23	36 43	7,1	5,8 6,6	,06 ,16	≝ Lim.Arg. ∉ Argile	36	21	43		6.4	,21
509	Dian Dian	Lim.Arg. Lim.Arg.	43 36		34 39	6,9 7,5	5,6 6,5		※ ※ ※	Argile	32	22	46	7,3	5,3		Lim.Arg.	29	25	46	-	4,6	,05
510 511	Dian Dian	Lim.Arg.	42		34	6,5	5,2	-		Argile	37	21	42	6,7	4,8	,05	Argile	35	24	41	•	4,7	,05
512	Dian	Argile	34		49	6,5	4,7	,08	10	Argile	27	15	59	7,9	6,5	,12	Argile	24	13	63	•	5,2	,13
513	Dian	Argile	37		48	6,3	5,1		40	Argile	28	14	58	5,2		,15	Argile Argile	25 22	14 16	61 62	•	4,1 5,5	,16 ,20
514	Dian	Argile	22		65	5,4	4,5		1	Argile Argile	28 19	13 16	58 65	5,9 6,6	5,6	,10 ,12	Argile	19	16	66		5,4	,13
515	Dian Dian	Argile Argile	22 31		63 54	6,2 8,8	7,4			Argile	29	17	55	7,6	6,4	,31	Argile	26	16	58	-	6,2	,27
516 517	Dian Dian	* Argile	18		67	6,7	4,8		4	Argile	14	16	70	6,4	4,7	,08	Argile	15	15	71		4,7	,10
518	Dian	Argile	19		61	6,1	4,9		77	Argile	18	18	64	6,1		•	# Argile	15	17	68	•	4,7	,13
519	Oian	Argile Sal			35	6,1	5,2		***	Argile	41	14	44	6,3	5,4	,13 ,30	Argile Argile	40 34	14 20	46 46	•	6,2 7,0	,18 ,38
520	Dian	Argile	41		45	7,3	6,3		W/	Argile Argile	35 37	17 17	48 46	8,2 8,0	6,6 6,1	,30	Argile	37	17	46		7,0	,36
521	Dian Dian	Argile Argile	39 24		44 57	7,7 5,4	6,8 4,4		1	Argile	19	18	63	-	4,3	,05	Argile	19	18	63		4,1	,06
522 523	Dian Dian	# Argile	42		42	5,7	4,6		ť	Argile	37	14	49	5,7	4,5	,09	Argile	36	14	51		5,6	,10
524	Dian	Argile Sa			40	6,0	5,0	,10		Argile	30	14	55		4,3	,05	* Argile	30	15	55		4,2	,04
525	Oian	∦ Argile	42	15	43	5,9	4,9	,06	ÿ	Argile	40	15	45	5,7	4,5	,09	& Argile	34	15	51	6,4	5,2	,12
601	Dian Hoursi	® Aroile	39	18	43	6,7	6,0	,20		Argile	35	16	49	1,6	6,5	,22	Argile	34	17	49	7,8		,28
662	Dian Hoursi	Lim.Arg.S			32	6,9	5,6			Argile	36	17	48		5,2	,06	Argile	36	16	48	7,1		,08
603	Dian Moursi		41		41	6,6	5,4		*	•	34	16	51	5,8	4,0	,04	Argile	34	16 15	50 50		4,0 6,3	,12 ,11
604	Dian Moursi		42		42	6,2			•	Argile	37 41	16 17	47 42	7,1 5,9	6,8 4,1	,10 ,04	Argile Argile	35 35	16	49		5,0	,03
605	Dian Moursi	# Argile 5a	01. 4/	16	37	6,8	5,7	,07		Argile	71	17	74	3,,	7,1	,,,,					•		·
701	<i>Şeno</i>	Elimon Sab	1. 75	16	9	7,1	6,5	,18		Limon Sabl.		14	15	1,1	6,6	, 24	Limon Sabl.						,29
702		Limon Sab			11	7,1				Lim.Arg.Sab		12	23	7,4	6,2	,54	Lim.Arg.Sabi		13 11	25 26		6,1 5,2	,18 ,03
703	Seno	E Limon Sab			9	5,5			1	Limon Sabl. Limon Sabl.		13 10	14 17	5,8 1,1		,02 ,11	<pre># Lim.Arg.Sab; tim.Arg.Sab;</pre>		10	20		6,6	,17
704	Seno Seno	Sable Lim Sable Lim			9 8	6,4 5,2				Limon Sabl.		13	16	6,0		,04	Lim.Arg.Sab		9	24		5,3	,03
705 706	Seno Seno	W Limon Sab		_	17	9,8		1,72	2	Limon Sabl.		14	14	9,6		,94	∰ Li∎on Sabl.		16	15		8,4	,81
707	Seno	§ Sable Li∎			1	5,6				Limon Sabl.		11	14	6,8		,02	Lia.Arg.Sab		12	26	6,7	5,3 5,5	,03 02
708	Seno	Limon Sab			10	5,9				Limon Sabl.		11	16 14	6,0 5,7	4,9 4,8	,02 ,01	Lim.Arg.Sab. Lim.Arg.Sab		11 12	25 30	6,0 5,5		,02 ,02
709 710	Seno	Limon Sab				5,4 4,5				Limon Sabl. Limon Sabl.		12 29	14	5,5		,01	Limon	42	37	21	5,6		,02
710 711	Seno Seno	Limon Sab				5,2				Limon Sabl.		28	13	5,8			Limon	51	31	19	6,2		
		Limon Sab				5,1			4			28	11	5,5		,01	Lim.Arg.Sab		19	22	5,8		,02
712		Elieon Sab				5,3			(Limon Sabl.		24	11	6,3			Lim.Arg.Sab		26 13	26 27	6,7 5,6		
714		Limon Sab			10	5,0				Elimon Sabl. ESable Lim.	70 80	13	17	5,0 5,8	4,1 5,0		<pre>Lim.Arg.Sab Limon Sabl.</pre>		14	13	5,8		
715		Sable Lie				5,6 4,9			7	Limon Sabl.		14 14	10	5,3	4,1		Lim.Arg.Sab		1	20	5,8		,03
716 717	Seno Seno	Sable Lie				6,9				Sable Lim.	80		8	6,0	4,6		Limon Sabl.	72	12		6,1	5,0	,03
718		Limon Sab				6,5		,07	- 1	Lim.Arg.Sab	1 58	22		6,4	5,0		Lim.Arg.Sab		19		6,1		
719		Elim.Arg.S	abl 63			5,9				Limon Sabl.				6,2			# Lim.Arg.Sab		18		6,4 6,1	4,8	
720		Limon Sat				5,5			4	Limon Sabl. Limon Sabl.		14 14	12 17	5,6 5,9	4,6	-	Lim.Arg.Sab		14 13		6,2		
721		# Limon Sab Limon Sab				5,6 6,3			7	Limon Sabl. Limon Sabl.				6,5	•		Lie.Arg.Sab		13		6,3		,02
722		Limon Sat				6,1			a contract of	Limon Sabl.			20	6,2	5,1	,02	🏿 Lim.Arg.Sab	1 63	16		6,3		
724	Seno	Sable Lie	1. 79	8 14	8	6,9	6,	1 ,14	4	Limon Sabl.				6,7			Lim.Arg.Sab		13		6,8		
	Seno	Limon Sat	ol. 69	9 14	18	6,5	4,	8 ,01		Limon Sabl.	67	13	20	6,4	4,5	,02	Flim.Arg.Sab	1 60	13	28	6,9	2,6	,01

0.16

0.28

0.32

0.28

0.32

0.12

0.20

0.20

0.14

0.16

0.16

0.34

0.21

0.55

0.44

0.12

0.12

0.14

0.20

0.25

0.12

701 Seno

702 Seno

703 Seno

704 Seno

706 Seno

710 Seno

711 Seno

712 Seno

Seno

Seno

Seno

Seno

Seno

Seno

Seno

Seno

Seno

Seno

Seno

Seno

721 Seno

722 Seno723 Seno724 Seno725 Seno

705

707

708

709

713

714

715

716

717

715

719

720

10		0.35	201		ble	0.31	501	Dian	0.26
10:		0.31	202	_		0.20	502	Dian	0.08
103		0.13	203	-		0.16	503	Dian	0.18
104		0.30	204	_		0.25	504	Dian	0.33
105		0.23	205	Danga	ble	0.51	505	Dian	0.15
106	_	0.42					506	Dian	0.29
107		0.13	301	_	fing		507	Dian	0.16
108		0.33	302	_	fing		508	Dian	0.41
109		0.13	303	•	fing		509	Dian	0.53
110		0.13	304	_	fing		510	Dian	0.39
111		0.19	305	•	=	0.31	511	Dian	0.52
112		0.19	306			0.22	512	Dian	0.29
113		0.13	307	Danga		0.21	513	Dian	0.52
114		0.12	305	Danga	•	0.35	514	Dian	0.41
115		0.19	309	Danga	-	0.37	515	Dian	0.37
116		0.33	310	Danga	fing	0.08	516	Dian	0.19
117		0.12					517	Dian	0.35
118		0.29	401	Danga		0.20	518	Dian	0.55
119	Moursi	0.19	402	Danga		0.10	519	Dian	0.41
120		0.42	403	Danga		0.10	520	Dian	0.20
121	Moursi	0.52	404	Danga		0.24	521	Dian	0.29
122	Moursi	0.33	405	Danga		0.24	522	Dian	0.27
123	Moursi	0.37	406	Danga		2.97	523	Dian	0.12
124	Moursi	0.25	407	Danga		0.32	524	Dian	0.20
125	Moursi	0.19	405	Danga		0.57	525	Dian	0.25
126	Moursi	0.29	109	Danga		0.55			
126	Manuai			.1.			* * 1	the transfer of	
128 129	Moursi Moursi	0.39	411	Danga		0.30	602	Dian-Moursi	
130	Moursi	0.19	412	Danga		1.29	603	Dian-Moursi	
131	Moursi	0.12	413	Danga		1.01	604	Dian-Moursi	
132	Moursi	0.25		Danga		0.65	605	Dian-Moursi	0.20
133	Moursi	0.23	415	Danga		0.12			
134	Moursi	0.33	416	Danga		0.12			
135	Moursi	0.25	418	Danga Danga		0.33			
136	Moursi	0.27	419	Danga		0.41			
137	Moursi	0.33	120	Danga). 24			
138	Moursi	0.41	421	Danga		0.10			
139	Moursi	0.46	422	Danga		0.10			
140	Moursi	0.31	423	Danga).16			
141	Moursi	0.17	424	Danga).14			
142	Moursi	0.31	425	Danga		.22			
143	Moursi	0.15	426	Danga		. 26			
144	Moursi	0.37	427	Danga		. 15			
145	Moursi	0.10	425	Danga		. 15			
146	Moursi	0.16	429	Danga		. 16			
147	Moursi	0.10	430	Danga		.41			
148	Moursi	0.10		<u> </u>	_				
149	Moursi	0.24							

150 Moursi

0.45